Основные концепции развития.
Основные концепции развития.
Основные концепции онтогенеза – индивидуального развития организма
Независимо от способа размножения начало новому организму дает клетка (оплодотворенная при половом размножении), содержащая гены - наследственные задатки, но не обладающая всеми признаками и свойствами организма. Развитие организма (онтогенез) заключается в постепенной реализации наследственной информации, полученной от родителей.
Каким образом генотип реализуется в фенотип? Ученые давно задумывались об этом. В результате сформировались 3 основных концепций онтогенеза.
Первая - преформизм – учение о том, что организм полностью сформирован (преформирован) в половых клетках в уменьшенном виде, а после оплодотворения начинается его рост. Возникло в античности, Гиппократ – основоположник. Отрицание развития, метафизическое учение. Наиболее популярно в 17-18 веках. Овисты отдавали предпочтение яйцеклеткам, анималькулисты – мужским половым клеткам.
Вторая - эпигенез – противоположное преформизму учение, признающее только развитие и отрицающее рост; яйцеклетка бесструктурна и однородна, все органы возникают как новообразование.
В 1828 году Карл Бэр доказал, что содержимое яйца неоднородно (учение о зародышевых листках) и степень неоднородности возрастает с развитием зародыша, выявил преемственность развития у разных классов животных и предложил рассматривать онтогенез как преобразование структур (третья концепция). Это основа современных представлений об онтогенезе как единстве роста и развития.
Особое внимание следует обратить на следующие понятия. Рост – это увеличение количества, размеров и массы клеток (т.е. количественные изменения). Развитие – качественные изменения в организме, обусловленные дифференцировкой клеток (разделением по морфологическим, биохимическим, функциональным признакам) и их ростом.
Онтогенез – целостный и непрерывный процесс, в котором отдельные события увязаны между собой в пространстве и времени. Онтогенез контролируется генами, т.е. детерминирован генетически, и тесно связан со средой.
Типы онтогенеза
Под личиночным развитием понимают непрямое развитие, поскольку организмы в своем развитии имеют одну или несколько личиночных стадий. Личиночное развитие широко распространено в природе и характерно для насекомых, иглокожих, амфибий. Личинки этих животных ведут самостоятельный образ жизни, подвергаясь затем превращениям. Поэтому это развитие называют еще развитием с метаморфозами
Неличиночное развитие характерно для организмов, развивающихся прямым образом, например для рыб, пресмыкающихся и птиц, яйца которых богаты желтком (питательным материалом). Благодаря этому в яйцах, откладываемых во внешнюю среду, проходит значительная часть онтогенеза, метаболизм зародышей обеспечивается развивающимися провизорными органами, представляющими собой зародышевые оболочки (желточный мешок, амнион, аллантоис)
Внутриутробное развитие также характерно для организмов, развивающихся прямым путем, например для млекопитающих, включая человека. Поскольку яйцеклетки этих организмов очень бедны питательными веществами, то все жизненные функции зародышей • обеспечиваются материнским организмом посредством образованных из тканей матери и зародыша провизорных органов, среди которых главным является плацента. Эволюционно внутриутробное развитие является самой поздней формой, однако оно наиболее выгодно для зародышей, т. к. наиболее эффективно обеспечивает их выживание.
Типы дробления
Голобластическое дробление
Плоскости дробления разделяют яйцо полностью. Выделяют полное равномерное дробление, при котором бластомеры не различаются по размерам (такой тип дробления характерен для гомолецитальных и алецитальных яиц), и полное неравномерное дробление, при котором бластомеры могут существенно различаться по размерам. Такой тип дробления характерен для умеренно телолецитальных яиц.
Меробластическое дробление
Дискоидальное(олигоцентрическое, потиентидальное, полиморфогистальное, винилдистерилориальное, компромертарионное)
ограничено относительно небольшим участком у анимального полюса,
плоскости дробления не проходят через всё яйцо и не захватывают желток.
Такой тип дробления типичен для телолецитальных яиц, богатых желтком (птицы, рептилии). Такое дробление называют также дискоидальным, так как в результате дробления на анимальном полюсе образуется небольшой диск клеток (бластодиск).
Поверхностное
ядро зиготы делится в центральном островке цитоплазмы,
получающиеся ядра перемещаются на поверхность яйца, образуя поверхностный слой ядер (синцитиальную бластодерму) вокруг лежащего в центре желтка. Затем ядра разделяются мембранами, и бластодерма становится клеточной.
Такой тип дробления наблюдается у членистоногих.
Способы гаструляции
Инвагинация — происходит путем впячивания стенки бластулы в бластоцель; характерна для большинства групп животных.
Деляминация (характерна для кишечнополостных) — клетки, находящиеся снаружи, преобразуются в эпителиальный пласт эктодермы, а из оставшихся клеток формируется энтодерма. Обычно деляминация сопровождается делениями клеток бластулы, плоскость которых проходит «по касательной» к поверхности.
Иммиграция — миграция отдельных клеток стенки бластулы внутрь бластоцеля.
Униполярная — на одном участке стенки бластулы, обычно на вегетативном полюсе;
Мультиполярная — на нескольких участках стенки бластулы.
Эпиболия — обрастание одних клеток быстро делящимися другими клетками или обрастание клетками внутренней массы желтка (при неполном дроблении).
Инволюция — вворачивание внутрь зародыша увеличивающегося в размерах наружного пласта клеток, который распространяется по внутренней поверхности остающихся снаружи клеток.
Гистогенез— совокупность процессов, приводящих к образованию и восстановлению тканей в ходе индивидуального развития (онтогенеза). В образовании определенного вида тканей участвует тот или иной зародышевый листок. Например, мышечная ткань развивается из мезодермы, нервная — из эктодермы, и т. д. В ряде случаев ткани одного типа могут иметь различное происхождение, например, эпителий кожи имеет эктодермальное, а всасывающий кишечный эпителий — энтодермальное происхождение.
В процессе гистогенеза образуются ткани организма. Из эктодермы образуются нервная ткань и эпидермис кожи с кожными железами, из которых впоследствии развивается нервная система, органы чувств и эпидермис. Из энтодермы образуются хорда и эпителиальная ткань, из которой впоследствии образуются слизистые, лёгкие, капилляры и железы (кроме половых и кожных). Из мезодермы образуются мышечная и соединительная ткань. Из мышечной ткани образуются ОДС, кровь, сердце, почки и половые железы.
Органогенез — процесс развития, или формирования, органов у зародыша человека и животных.
Как возникает старение
Молекулярные механизмы
Существуют свидетельства нескольких важнейших механизмов повреждения макромолекул, которые обычно действуют параллельно один другому или зависят один от другого[12]. Вероятно, любой из этих механизмов может играть доминирующую роль при определённых обстоятельствах.
Во многих из этих процессов важную роль играют активные формы кислорода (в частности свободные радикалы), набор свидетельств об их влиянии был получен достаточно давно и сейчас известен под названием «свободно-радикальная теория старения». Сегодня, тем не менее, механизмы старения намного более детализированы.
Теория соматических мутаций
Многие работы показали увеличение с возрастом числа соматических мутаций и других форм повреждения ДНК, предлагая репарацию (ремонт) ДНК в качестве важного фактора поддержки долголетия клеток. Повреждения ДНК типичны для клеток, и вызываются такими факторами как жёсткая радиация и активные формы кислорода, и потому целостность ДНК может поддерживаться только за счёт механизмов репарации. Действительно, существует зависимость между долголетием и репарацией ДНК, как это было продемонстрировано на примере фермента поли-АДФ-рибоза-полимеразы-1 (PARP-1), важного игрока в клеточном ответе на вызванное стрессом повреждение ДНК[18]. Более высокие уровни PARP-1 ассоциируются с большей продолжительностью жизни.
Митохондриальная теория
Митохондриальная теория старения впервые была предложена в 1978 году (митохондриальная теория развития, старения и злокачественного роста)[21][22]. Суть её заключается в том, что замедление размножения митохондрий в высокодифференцированных клетках вследствие дефицита кодируемых в ядре митохондриальных белков создает условия для возникновения и селективного отбора дефектных делеционныхмтДНК, увеличение доли которых постепенно снижает энергетическое обеспечение клеток. В 1980 году была предложена радикальная митохондриальная теория старения[23]. В настоящее время накопилось много данных свидетельствующих о том, что свободные радикалы не являются причиной естественного старения. Эти данные не опровергают митохондриальную теорию старения (1978 г.), которая не опирается на свободные радикалы, но доказывают ложность радикального варианта митохондриальной теории старения (1980 г.).
Важность связи между молекулярным стрессом и старением была предположена, основываясь на наблюдениях за эффектом накопления мутаций в митохондриальной ДНК (мтДНК)[24]. Эти данные были подкреплены наблюдением увеличения с возрастом числа клеток, которым не хватает цитохром-с-оксидазы (COX), что ассоциировано с мутациями мтДНК. Такие клетки часто имеют нарушения в производстве АТФ и клеточном энергетическом балансе.
Утрата теломер
Во многих клетках человека утрата способности клеток к делению связана с утратой теломер на концах хромосом, которые утрачиваются после определённого количества делений. Это происходит из-за отсутствия фермента теломеразы, который обычно экспрессуется только у зародышевых и стволовых клеток. Недавно было обнаружено, что окислительный стресс(чрезмерное выделение активных форм кислорода) также может иметь влияние на утрату теломер, значительно ускоряя этот процесс в определённых тканях[25].
Популяционный подход
Другим подходом к изучению старения являются исследования популяционной динамики старения. Все математические модели старения можно примерно разбить на два главных типа: модели данных и системные модели[27]. Модели данных — это модели, которые не используют и не пытаются пояснить какие-либо гипотезы о физических процессах в системах, для которых эти данные получены. К моделям данных относятся, в частности, и все модели математической статистики. В отличие от них, системные модели строятся преимущественно на базе физических законов и гипотез о структуре системы, главным в них является проверка предложенного механизма.
Первым законом старения является закон Гомпертца, который предлагает простую количественную модель старения. Этот закон даёт возможность разделить два типа параметровпроцесса старения. Исследования отклонения закона старения от кривой Гомпертца могут дать дополнительную информацию относительно конкретных механизмов старения данного организма. Самый известный эффект такого отклонения — выход смертности на плато в позднем возрасте вместо экспоненциального роста, наблюдавшийся во многих организмах[28]. Для пояснения этого эффекта было предложено несколько моделей, среди которых вариации модели Стрелера-Милдвана[28] и теории надёжности[29].
Системные модели рассматривают много отдельных факторов, событий и явлений, которые непосредственно оказывают влияние на выживание организмов и рождение потомства. Эти модели рассматривают старение как баланс и перераспределение ресурсов как в физиологическом (в течение жизни одного организма), так и в эволюционном аспектах. Как правило, особенно в последнем случае, речь идёт о распределении ресурсов между непосредственными затратами на рождение потомства и затратами на выживание родителей[27].
Клеточный ответ на старение
Важным вопросом старения на уровне клеток и ткани является клеточный ответ на повреждения. Из-за стохастической природы повреждений отдельные клетки стареют, например в связи с достижением границы Хейфлика, быстрее остальных клеток. Такие клетки потенциально могут угрожать здоровью всей ткани. В наибольшей мере такая угроза проявляется среди стволовых клеток, у которых происходит быстрое деление, таких как клетки костного мозга или эпителия кишечника, в связи с большим потенциалом таких тканей в создании мутантных, возможно раковых, клеток. Известно, что именно клетки этих тканей быстро отвечают на повреждения инициацией программы апоптоза. Например, даже низкие дозы радиации (0,1 Gy) вызывают апоптоз в клетках эпителия кишечника, а даже слабый химический стресс вызывает апоптоз стволовых клеток старых мышей.
Как правило, в таких тканях массовыйапоптоз является признаком возрастания числа повреждений клеток. С другой стороны, в других тканях ответом на возрастание уровня повреждений может быть арест клеток на определённой стадии клеточного цикла для прекращения деления[12]. Баланс между апоптозом и арестом повреждённых клеток наиболее важен как компромисс между старением и раком[30]. То есть, или организм должен убить повреждённые клетки, или дать им возможность существовать, увеличивая риск возникновения рака. Таким образом, p53 и сокращение теломер, важные факторы в вызывании апоптоза клеток, могут рассматриваться как пример антигонистической плейотропии, как было указано выше.
Подводя итог, по современным представлениям, клетка стареет в результате накопления повреждений. Скорость этого накопления определяется, в первую очередь, генетически определёнными затратами на ремонт и поддержку клеточных структур, которые в свою очередь определяются организмом для удовлетворения своих экологических потребностей. Долгоживущие организмы имеют большие затраты (иногда более длительный метаболизм), что приводит к более медленному накоплению повреждений. Для борьбы с риском, который представляют собой повреждённые клетки, организм создал систему механизмов для борьбы с ними, которые часто включают второй ряд компромиссов.
Молекулярные механизмы
Существуют свидетельства нескольких важнейших механизмов повреждения макромолекул, которые обычно действуют параллельно один другому или зависят один от другого[39]. Вероятно, любой из этих механизмов может играть доминирующую роль при определённых обстоятельствах.
Во многих из этих процессов важную роль играют активные формы кислорода (в частности свободные радикалы), набор свидетельств о их влиянии был получен достаточно давно и сейчас известен под названием «свободно-радикальная теория старения». Сегодня, тем не менее, механизмы старения намного более детализированы. Так, например, обнаружено что характер метилирования ДНК в геноме тесно связан с хронологическим возрастом[44][45] [46]
Порой такие полученные соединения имеют настолько необычную структуру, что с ними не справляется ни один изсамо очищающих механизмов клетки. Подобные изменения весьма редки, но с течением времени они аккумулируются. Это не имеет существенного значения, если клетки продолжают регулярно делиться, поскольку деление понижает концентрацию шлаков, однако неделящиеся клетки постепенно наполняются шлаками различного типа в различных типах клеток. Таким образом, биологический мусор мешает нормальному функционированию клеток.
Генетические мутации
Со временем в результате различных повреждающих факторов в генах накапливается большое количество повреждений или мутаций. Накопление с возрастом таких мутаций в различных органах и тканях во многом и определяет развитие возрастной патологии, включая рак. Рак способен убить нас, даже если в одной клетке произойдут соответствующие мутации, в то время как любые потери функциональности в генах, не имеющих никакого отношения к раку, относительно безвредны, пока они не затрагивают множество клеток данной ткани. Повреждения и мутации ДНК могут служить причиной двух проблем: клетки либо "кончать жизнь самоубийством", либо прекращают делиться в качестве ответной реакции на повреждение ДНК, (предотвращая тем самым развитие рака).
Гипотезы старения
Теории старения (Ноздрачев А.Д. и др., 2001) | ||
Теория | Главная идея | Современное состояние |
Измененных белков | Происходящие со временем претрансляционные изменения в молекулах меняют их конформацию и ферментативную активность, работа клетки нарушается | Подтверждена, точный механизм неясен |
Соматических мутаций | Соматические мутации изменяют генетическую информацию и снижают эффективность работы клетки до уровня ее гибели | В нескольких случаях не подтверждена, но образование опухолей, по крайней мере, отчасти – результат соматических мутаций |
Повреждения и восстановления ДНК | В клетке есть механизмы, восстанавливающие ДНК после ее повреждений. По мере старения эффективность восстановления снижается | Подтверждена, точно роль этих механизмов не известна |
Катастрофы ошибок | Нарушение транскрипции и/или трансляции снижает эффективность работы клетки до уровня ее гибели | Не подтверждена, но в измененном виде соответствует некоторым фактам |
Дисдифференциации | Нарушение механизмов активации/репрессии генов приводит к синтезу ненужных белков, что снижает эффективность работы клетки до уровня ее гибели | Возможна |
Окислительного повреждения, или свободных радикалов | Продолжительность жизни обратно пропорциональна степени окислительного повреждения и прямо пропорциональна антиоксидантной защите | Подтверждена в некоторых случаях, возможна – во многих других |
Накопления отходов (метаболитов) | Отходы обмена веществ (метаболиты) накапливаются в клетке и снижают эффективность ее работы до уровня гибели, если они не удаляются или не растворяются при делении клетки | Возможна, особенно в новой интерпретации, но мало вероятна |
Посттрансляционных изменений в белках | Со временем происходит химическая модификация важных молекул (например, коллагена), что нарушает функции клетки и снижает эффективность работы организма до уровня его гибели. Поперечные сшивки в молекулах белка – часть этого механизма | Подтверждена |
«Носилось и износилось» | Повреждения тканей происходят ежедневно в процессе нормальной жизни. Они нарушают работу организма до уровня его гибели | Подтверждена в ограниченном числе случаев (например, потеря зубов ведет к голоданию). В измененном виде стали частью других теорий |
Метаболические теории | Продолжительность жизни обратно пропорциональна величине основного обмена | В исходном виде опровергнуты, превращенные в теорию свободных радикалов, возможно, верны |
Генетические теории | Изменения в экспрессии генов вызывают соответствующие изменения в клетках. Предполагается участие множества механизмов. Изменения могут действовать на внутри- и межклеточных уровнях | Подтверждены, но нет единого генетического механизма |
Апоптоза | Программированное самоубийство клеток вызывается внеклеточными командами | Подтверждена. Неспособность вызывать или подавить апоптоз, возможно, ответственна за многие заболевания. Роль в здоровом старении неясна |
Фагоцитоза | Старые клетки несут на себе белки, по которым другие клетки, например макрофаги, опознают их и уничтожают | Подтверждена для ограниченного числа случаев |
Нейроэндокринные теории | Нарушения в клетках, выполняющих специфические интегративные функции, ведут к нарушению гомеостаза, старению и смерти | Подтверждены для старения женской репродуктивной системы и других случаев. Возможно, подходят и для многих |
Иммунологические теории | Продолжительность жизни зависит от специальных генов иммунной системы, одни аллели продляют ее, другие – сокращают. Эти же гены, возможно, регулируют и нейроэндокринную систему. Нарушение этих механизмов снижает эффективность работы организма до уровня его гибели | Вероятны |
Основные концепции развития.
Основные концепции онтогенеза – индивидуального развития организма
Независимо от способа размножения начало новому организму дает клетка (оплодотворенная при половом размножении), содержащая гены - наследственные задатки, но не обладающая всеми признаками и свойствами организма. Развитие организма (онтогенез) заключается в постепенной реализации наследственной информации, полученной от родителей.
Каким образом генотип реализуется в фенотип? Ученые давно задумывались об этом. В результате сформировались 3 основных концепций онтогенеза.
Первая - преформизм – учение о том, что организм полностью сформирован (преформирован) в половых клетках в уменьшенном виде, а после оплодотворения начинается его рост. Возникло в античности, Гиппократ – основоположник. Отрицание развития, метафизическое учение. Наиболее популярно в 17-18 веках. Овисты отдавали предпочтение яйцеклеткам, анималькулисты – мужским половым клеткам.
Вторая - эпигенез – противоположное преформизму учение, признающее только развитие и отрицающее рост; яйцеклетка бесструктурна и однородна, все органы возникают как новообразование.
В 1828 году Карл Бэр доказал, что содержимое яйца неоднородно (учение о зародышевых листках) и степень неоднородности возрастает с развитием зародыша, выявил преемственность развития у разных классов животных и предложил рассматривать онтогенез как преобразование структур (третья концепция). Это основа современных представлений об онтогенезе как единстве роста и развития.
Особое внимание следует обратить на следующие понятия. Рост – это увеличение количества, размеров и массы клеток (т.е. количественные изменения). Развитие – качественные изменения в организме, обусловленные дифференцировкой клеток (разделением по морфологическим, биохимическим, функциональным признакам) и их ростом.
Онтогенез – целостный и непрерывный процесс, в котором отдельные события увязаны между собой в пространстве и времени. Онтогенез контролируется генами, т.е. детерминирован генетически, и тесно связан со средой.
Типы онтогенеза
Под личиночным развитием понимают непрямое развитие, поскольку организмы в своем развитии имеют одну или несколько личиночных стадий. Личиночное развитие широко распространено в природе и характерно для насекомых, иглокожих, амфибий. Личинки этих животных ведут самостоятельный образ жизни, подвергаясь затем превращениям. Поэтому это развитие называют еще развитием с метаморфозами
Неличиночное развитие характерно для организмов, развивающихся прямым образом, например для рыб, пресмыкающихся и птиц, яйца которых богаты желтком (питательным материалом). Благодаря этому в яйцах, откладываемых во внешнюю среду, проходит значительная часть онтогенеза, метаболизм зародышей обеспечивается развивающимися провизорными органами, представляющими собой зародышевые оболочки (желточный мешок, амнион, аллантоис)
Внутриутробное развитие также характерно для организмов, развивающихся прямым путем, например для млекопитающих, включая человека. Поскольку яйцеклетки этих организмов очень бедны питательными веществами, то все жизненные функции зародышей • обеспечиваются материнским организмом посредством образованных из тканей матери и зародыша провизорных органов, среди которых главным является плацента. Эволюционно внутриутробное развитие является самой поздней формой, однако оно наиболее выгодно для зародышей, т. к. наиболее эффективно обеспечивает их выживание.