Особенности строения и метаболизма клеток грибов.
Грибы весьма разнообразны по внешнему виду, местам обитания и физиологическим функциям. Однако у них есть и общие черты. Основой вегетативного тела грибов является мицелий, или грибница, представляющая собой систему тонких ветвящихся нитей, или гиф, находящихся на поверхности субстрата, где живет гриб, или внутри его. Обычно грибница бывает весьма обильна, с большой общей поверхностью. Через нее осмотическим путем происходит всасывание пищи. У грибов, условно называемых низшими, грибница не имеет перегородок (неклеточная); у некоторых тело представляет голый протопласт; у остальных грибница разделена на клетки.
Клетка грибов в большинстве покрыта твердой оболочкой -- клеточной стенкой. Ее нет у зооспор и вегетативного тела некоторых простейших грибов. Внутрь от клеточной стенки расположена цитоплазматическая мембрана, окружающая внутреннюю часть клетки -- протопласт.
Клеточная стенка на 80--90% состоит из содержащих азот и безазотистых полисахаридов. Кроме того, в ее составе в небольшом количестве имеются белки, липиды и полифосфаты. У большинства грибов основным полисахаридом является хитин, а у оомицетов -- целлюлоза.
В цитоплазме гриба содержатся структурные белки и не связанные с органоидами клетки ферменты, аминокислоты, углеводы, липиды. В грибной клетке есть органеллы: митохондрии (сходные в основном с таковыми у высших растений), лизосомы с протеолитическими ферментами, осуществляющими расщепление белков. В клетке гриба есть вакуоли, содержащие запасные питательные вещества -- волю тин, липиды, гликоген, а также жиры, в основном ненасыщенные жирные кислоты. Крахмала нет.
В грибной клетке имеется от одного до нескольких ядер. У ядра двойная мембрана, ядрышко и хромосомы, содержащие дезоксирибонуклеиновую кислоту (ДНК).
Гифы, из которых образуется мицелий, имеют верхушечный рост и обильно ветвятся. Ветви у них тем моложе, чем ближе расположены к растущей вершине. При образовании органов спороношения, а часто и в вегетативных органах грибные нити плотно переплетаются, образуя ложную ткань, или плектенхиму . Она отличается от настоящей ткани своим происхождением. Ложная ткань грибов образуется путем переплетения нитей грибницы, а у высших растений -- в результате деления клеток по всем направлениям. Под микроскопом плектенхима нередко напоминает обычную паренхиму, причем иногда в ней наблюдается известная дифференцировка на кроющую, проводящую и т. п.
Как указывалось, у большинства хитридиевых грибов мицелий отсутствует, и тогда тело их представлено голым протопластом. У других хитридиевых, а также у оомицетов, большинства зигомицетов он лишен перегородок, хотя иногда достигает больших размеров, представляя, по существу, одну гигантскую клетку со многими ядрами. У остальных грибов гифы мицелия имеют поперечные перегородки, делящие их на клетки, часто многоядерные.
Параллельное соединение гиф образует мицелиальные тяжи, хорошо заметные при основании крупных плодовых тел. По ним притекают вода и питательные вещества.
У некоторых грибов (особенно у опенка и домовых грибов) тяжи более мощные, их называют ризоморфами (они достигают нескольких метров длиной и нескольких миллиметров толщиной). У ризоморфов стенки наружных гиф темного цвета, а внутренние гифы обычно белые. Назначение ризоморфов то же, что и тонких тяжей, причем в некоторых случаях внутри ризоморф имеются особые проводящие трубки -- широкие гифы, напоминающие сосуды высших растений.
Особый тип видоизменения мицелия представляют склероции -- плотные переплетения гиф. Склероции богаты запасными питательными веществами и помогают грибу переносить неблагоприятные условия зимой, во время засухи и т. п. Склероции снаружи обычно темные, округлые или неправильной формы, от очень мелких до 30 см в диаметре. Из склероциев развиваются или мицелий, или органы плодоношения. Ложная ткань гриба: 1 -- наружный слой; 2 -- внутренний слой
Особенности метаболизма грибов 1. Биохимические свойства грибов 2. Антигены грибов
1.Грибы биохимически очень активны, в природе они участвуют в круговороте азота и углерода, в процессах минерализации.
Грибы образуют целлюлозы, выделяемые из мицелия и питательной среды, и активно разрушают целлюлозу растительных остатков в аэробных условиях, в том числе древесины. Они эффективнее бактерий, особенно в кислых почвах. Большинство грибов продуцируют ксиланазы, расщепляя уси-лан, второй по распространенности вслед за целлюлозой вприроде углевод, входящий в состав соломы и луба, древесины хвойных и лиственных пород, сахарного тростника. Грибы синтезируют альфа-амилазы, осуществляя гидролиз крахмала; при росте на углеводных средах (с глюкозой, сахарозой) многие дрожжи синтезируют бета-1-6-глюкан, входящий в состав их клеточной стенки в качестве нерастворимой опорной структуры. Некоторые дрожжеподобные грибы выделяют глю-кан-пуллулан и маннаны, а плесневые грибы рода пенициллина активно накапливают в мицелиях полисахарид нигеран. Ас-пергиллы активно расщепляют фруктаны, хитин. Многим грибам присуща способность расщеплять пектины, что используется при аэробной росяной мочке льна и конопли. Базидиомицеты активно разрушают лигнин живых растений. При этом выделяют возбудителей бурой гнили, разрушающих целлюлозные и гемицеллюлозные компоненты древесины и возбудителей белой гнили, разрушающих собственно лигнин. Дрожжи рода Candidaспособны разрушать метанол и алканы с длинной цепью.
Многие грибы разрушают ароматические углеводороды за счет ферментативного разрыва ароматического кольца. Все указанные процессы идут с участием экзоферментов грибов. В анаэробных условиях дрожжи активно осуществляют брожение, но рост их резко замедляется, в аэробных условиях идут процессы дыхания с активным размножением грибов. Дрожжевые грибы широко используют в технологических процессах хлебопекарного и пивоваренного производства, виноделия. Главные продуценты этанола — грибы рода Saccharomyces, которые без доступа кислорода сбраживают глюкозу с его образованием. Помимо глюкозы дрожжи способны сбраживать пиру-ват. Брожение дрожжами в присутствии бисульфата используют для промышленного производства глицерина.
Многочисленные грибы, наряду с бактериями, осуществляют распад белков в почве, минерализацию азота. Многие плесневые грибы являются продуцентами антибиотиков(пенициллина, эритромицина и др.) и используются в антибиотической промышленности. Многие грибы способны разлагать кератин, что обусловливает многочисленные поражения кожи и ее дериватов,в том числе у человека.
Изучение биохимических свойств грибов имеет важное значение для развития не только промышленной микробиологии, но и медицинской микологии. По биохимическим свойствам идентифицируют вид чистой культуры гриба, выделенной в ходе микологического исследования из материла от больного, что позволяет поставить точный диагноз. Набор ферментов строго специфичен для вида.
2. Антигенное строение грибов достаточно сложное и требует дальнейшего изучения. Условно антигены грибов можно разделить на 2 группыпо биохимической природе: белковые и полиса-харидные.
Белковые — сильные иммуногены и ответственны за развитие гуморального иммунного ответа в макроорганизме с образованием иммуноглобулинов классов G и М. Белковые антигены грибов и антитела к ним можно выявить в реакции агглютинации, РСК и использовать эти реакции в иммунодиагностике микозов — заболеваний, вызываемых грибами.
Вторая группа антигенов (полисахаридной природы) обусловливает клеточный иммунный ответ и развитие гиперчувствительности замедленного типа. Сенсибилизация организма грибами и проявление микозов всегда сопровождаются состоянием инфекционной аллергии, что позволяет использовать в диагностике этих заболеваний внутрикожные аллергические пробы с соответствующими аллергенами из грибов-возбудителей.
69. Движение цитоплазмы у растений. Особенность образования клеточного центра. Включения.
Хотя число органелл в клетке очень велико, отстоят они друг от друга на довольно значительное расстояние и каждая из них окружена избирательно проницаемой мембраной. Каким же образом осуществляется необходимый обмен всевозможным материалом между отдельными органеллами? Ответ на этот вопрос следует искать частично в диффузии, а частично в циклозе — довольно быстром движении, свойственном содержимому многих растительных клеток. При циклозе вся цитоплазма клетки вращается (либо по часовой стрелке, либо против нее), скользя вдоль внутренней поверхности клеточной стенки и увлекая с собой различные органеллы. Наряду с этим существуют встречные и боковые потоки, а в некоторых клетках, например в тычиночных волосках Tradescantia, можно наблюдать активное движение цитоплазмы также и в цитоплазматических тяжах, пересекающих вакуоль. Механизм, управляющий движением цитоплазмы, полностью еще не изучен, однако ясно, что в этом движении принимают участие органеллы, называемые микрофиламентами. Микрофиламеиты содержат, по-видимому, актин и миозин — два белка, участвующие в мышечном сокращении у животных; сокращение мышцы происходит в результате взаимного смещения актиновых и миозиновых нитей, сопровождающегося расходованием энергии АТР. Выяснилось, что циклоз чувствителен к содержанию АТР в клетке и что он протекает активно только при тех условиях, при которых возможен синтез АТР. Вещества, нарушающие структуру микрофиламентов, подавляют циклоз. Установлено, например, что такой лекарственный препарат, как цитохалазин В, вызывает агрегацию микрофиламентов и вместе с тем подавляет, во-первых, движение цитоплазмы во многих растительных клетках и, во-вторых, движение гигантских хлоропластов различных водорослей. (Некоторые хлоропласты способны перемещаться в цитоплазме и ориентироваться — обычно в ответ на изменение освещенности — таким образом, чтобы их плоские поверхности располагались параллельно или перпендикулярно поверхности листа) Подавление, вызванное инкубацией клеток в цитохалазине В, можно снять отмыванием тканей от этого препарата.
Перемещения хромосом во время митоза и мейоза осуществляются также с помощью сократительных элементов, так называемых микротрубочек. Микротрубочки — это вытянутые полые структуры длиной в несколько микрометров при диаметре всего 15—25 нм и толщине «стенки» около 6 нм. В микротрубочках содержится белок тубулин, изменяющий свою конфигул рацию в ответ на некоторые химические воздействия, например под влиянием ионов Са2+. Микротрубочки прикрепляются к особому участку хромосом, к так называемому кинетохору, и помогают растаскивать хромосомы к противоположным полюсам клетки во время клеточного деления. Снабженные жгутиками клетки водорослей и подвижные половые клетки (гаметы) различных растений движутся также благодаря сокращению микротрубочек. В поперечном сечении жгутики обычно имеют характерное строение: 9 пар микротрубочек образуют кольцо, окружающее 2 пары, находящиеся в центре. Плазмалемма (а, быть может, также и тонопласт) находится в непрерывном движении. На ней возникают как бы «волдыри», которыми она окружает и захватывает находящиеся снаружи частички или же крупные молекулы, после чего эти частички в процессе пиноцитоза транспортируются в цитоплазму в маленьких мембранных пузырьках. Аналогичным образом протекает и обратный процесс — выведение различных материалов из клетки наружу.
В живой клетке, как и повсюду в природе, структура и функция тесно связаны. Любая деталь специфической архитектуры каждой клеточной органеллы уникальным образом приспособлена к выполнению определенных функций, о которых мы будем говорить в следующих главах.
Особенность образования клеточного центра
Центросома, центросфера, центроплазма или клеточный центр — немембранный органоид, главный центр организации микротрубочек (ЦОМТ) и регулятор хода клеточного цикла в клетках эукариот. Впервые обнаружена в 1883 году Теодором Бовери, который назвал её «особым органом клеточного деления». Хотя центросома играет важнейшую роль в клеточном делении, недавно было показано, что она не является необходимой. В подавляющем большинстве случаев в клетке в норме присутствует только одна центросома. Аномальное увеличение числа центросом характерно для раковых клеток. Более одной центросомы в норме характерно для некоторых полиэнергидных простейших и для синцитиальных структур.
У многих живых организмов (животных и ряда простейших) центросома содержит пару центриолей, цилиндрических структур, расположенных под прямым углом друг к другу. Каждая центриоль образована девятью триплетами микротрубочек, расположенными по кругу, а также ряда структур, образованных центрином, ценексином и тектином.
В интерфазе клеточного цикла центросомы ассоциированы с ядерной мембраной. В профазе митоза ядерная мембрана разрушается, центросома делится, и продукты ее деления (дочерние центросомы) мигрируют к полюсам делящегося ядра. Микротрубочки, растущие из дочерних центросом, крепятся другим концом к так называемым кинетохорам на центромерах хромосом, формируя веретено деления. По завершении деления в каждой из дочерних клеток оказывается только по одной центросоме.Помимо участия в делении ядра, центросома играет важную роль в формировании жгутиков и ресничек. Центриоли, расположенные в ней, выполняют функцию центров организации для микротрубочек аксонем жгутиков. У организмов, лишенных центриолей (например, у сумчатых и базидиевых грибов, покрытосеменных растений), жгутики не развиваются.
Включения цитоплазмы — это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы: трофические; секреты; инкреты; пигменты; экскреты и др. специальные включения (гемоглобин)
Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы. Белки как трофические включения используются лишь в редких случаях (в яйцеклетках в виде желточных зерен).
Пигментные включения придают клеткам и тканям определенную окраску.
Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности. Экскреты - конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.