Мейоз. Биологическое значение мейоза.
Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. .С помощью мейоза образуются споры и половые клетки — гаметы. В результате редукции хромосомного набора в каждую гаплоидную спору и гамету попадает по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т.е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.
В профазе мейоза I растворяются ядрышки, распадается ядерная оболочка и начинается формирование веретена деления. Хроматин спи-рализуется с образованием двухроматидных хромосом (в диплоидной клетке — набор 2п4с). Гомологичные хромосомы попарно сближаются, этот процесс называется конъюгацией хромосом. При конъюгации хроматиды гомологичных хромосом в некоторых местах перекрещиваются. Между некоторыми хроматида-ми гомологичных хромосом может происходить обмен соответствующими участками — кроссинговер.
В метафазе I пары гомологичных хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация хромосом достигает максимума.
В анафазе I гомологичные хромосомы (а не сестринские хроматиды, как при митозе) отходят друг от друга и растягиваются нитями веретена деления к противоположным полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадет только одна. Таким образом, в конце анафазы I набор хромосом и хроматид у каждого полюса делящейся клетки составляет \ti2c — он уже уменьшился вдвое, но хромосомы все еще остаются двухро матидными.
В телофазе I веретено деления разрушается, происходит формирование двух ядер и деление цитоплазмы. Образуются две дочерние клетки, содержащие гаплоидный набор хромосом, каждая хромосома состоит из двух хроматид (\п2с).
Промежуток между мейозом I и мейозом II очень короткий. И н т е р ф а з а II практически отсутствует. В это время не происходит репликация ДНК и две дочерние клетки быстро вступают во второе деление мейоза, протекающее по типу митоза.
В профазе II происходят те же процессы, что и в профазе митоза: формируются хромосомы, они беспорядочно располагаются в цитоплазме клетки. Начинает формироваться веретено деления.
В метафазе II хромосомы располагаются в экваториальной плоскости.
В анафазе II сестринские хроматиды каждой хромосомы разделяются и отходят к противоположным полюсам клетки. В конце анафазы II набор хромосом и хроматид у каждого полюса — \ti\c.
В телофазе II образуются четыре гаплоидные клетки, каждая хромосома состоит из одной хроматиды (lnlc).
Таким образом, мейоз представляет собой два последовательных деления ядра и цитоплазмы, перед которыми репликация происходит только один раз. Энергия и вещества, необходимые для обоих делений мейоза, накапливаются во время и н тер фазы I.
В профазе мейоза I происходит кроссинговер, что ведет к перекомбинации наследственного материала. В анафазе I гомологичные хромосомы случайным образом расходятся к разным полюсам клетки, в анафазе II то же самое происходит с сестринскими хроматидами. Все эти процессы обусловливают комби-нативную изменчивость живых организмов, о которой будет говориться позже.
Биологическое значение мейоза. У животных и человека мейоз приводит к образованию гаплоидных половых клеток — гамет. В ходе последующего процесса оплодотворения (слияния гамет) организм нового поколения получает диплоидный набор хромосом, а значит, сохраняет присущий данному виду организмов кариотип. Следовательно, мейоз препятствует увеличению числа хромосом при половом размножении. Без такого механизма деления хромосомные наборы удваивались бы с каждым следующим поколением.
У растений, грибов и некоторых протистов путем мейоза образуются споры. Процессы, протекающие в ходе мейоза, служат основой комбинативной изменчивости организмов.
Благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.
Сущность мейоза состоит в том, что каждая половая клетка получает одинарный — гаплоидный набор хромосом. Вместе с тем, мейоз — это стадия, во время которой создаются новые комбинации генов путем сочетания разных материнских и отцовских хромосом. Перекомбинирование наследственных задатков возникает, кроме того, и в результате обмена участками между гомологичными хромосомами, происходящего в мейозе. Мейоз включает два последовательных, следующих друг за другом практически без перерыва, деления. Как и при митозе, в каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу. Второе мейотическое деление – сущность периода созревания состоит в том, что в половых клетках путем двукратного мейотиче-ского деления количество хромосом уменьшается вдвое, а количество ДНК — вчетверо. Биологический смысл второго мейотического деления заключается в том, что количество ДНК приводится в соответствие хромосомному набору. У особей мужского пола все четыре гаплоидные клетки, образовавшиеся в результате мейоза, в дальнейшем преобразуются в гаметы — сперматозоиды. У особей женского пола вследствие неравномерного мейоза лишь из одной клетки получается жизнеспособное яйцо. Три другие дочерние клетки гораздо мельче, они превращаются в так называемые направительные, или редукционные, тельца, вскоре погибающие. Биологический смысл образования только одной яйцеклетки и гибели трех полноценных (с генетической точки зрения) направительных телец обусловлен необходимостью сохранения в одной клетке всех запасных питательных веществ, для развития, будущего зародыша.
Клеточная теория.
Клетка - элементарная единица строения, функционирования и развития живых организмов. Существуют неклеточные формы жизни - вирусы, однако они проявляют свои свойства только в клетках живых организмов. Клеточные формы делятся на прокариот и эукариот.
Открытие клетки принадлежит английскому ученому Р. Гуку, который, просматривая под микроскопом тонкий срез пробки, увидел структуры, похожие на пчелиные соты, и назвал их клетками. Позже одноклеточные организмы исследовал голландский ученый Антони ван Левенгук. Клеточную теорию сформулировали немецкие ученые М. Шлейден и Т. Шванн в 1839 г. Современная клеточная теория существенно дополнена Р. Биржевым и др.
Основные положения современной клеточной теории:
клетка - основная единица строения, функционирования и развития всех живых организмов, наименьшая единица живого, способная к самовоспроизведению, саморегуляции и самообновлению;
клетки всех одноклеточных и многоклеточных организмов сходны (гомологиины) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;
размножение клеток происходит путем их деления, каждая новая клетка образуется в результате деления исходной (материнской) клетки;
в сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервной и гуморальной регуляциям.
Эти положения доказывают единство происхождения всех живых организмов, единство всего органического мира. Благодаря клеточной теории стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов.
Клетка - самая мелкая единица организма, граница его делимости, наделенная жизнью и всеми основными признаками организма. Как элементарная живая система, она лежит в основе строения и развития всех живых организмов. На уровне клетки проявляются такие свойства жизни, как способность к обмену веществ и энергии, авторегуляция, размножение, рост и развитие, раздражимость.
50. Закономерности наследования, установленные Г. Менделем.
Закономерности наследования были сформулированы в 1865г Грегори Менделем. В своих экспериментах он проводил скрещивание различных сортов гороха.
Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:
- анализ начинается со скрещивания чистых линий: гомозиготных особей.
- анализируются отдельные альтернативные взаимоисключающие признаки.
- точный количественный учет потомков с различной комбинацией признаков
- наследование анализированных признаков прослеживается в ряду поколений.
1 ый закон Менделя: "Закон единообразия гибридов 1ого поколения"
При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.
В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).
2 ой закон Менделя: "Закон расщепления"
При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1
В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.
3 ий закон Менделя: "Закон независимого комбинирования признаков"
При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.
Для изучения закономерности наследования растений, отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание. Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание, где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами. Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.
При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки - таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями. Анализирующее скрещивание
Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой.
Гомозиготная особь даст единобразное поколение,а геторозиготная - расщепление по фенотипу и генотипу 1:1.