Происхождение и эволюция митоза
Возможные пути эволюции типов митоза у простейших. В квадратных скобках изображена гипотетическая промежуточная стадия.
Условные обозначения: 1. Закрытый эвгленоидный митоз; 2. Закрытый внутриядерный плевромитоз;
3. Закрытый внеядерный плевромитоз; 4. Полузакрытый плевромитоз; 5. Закрытый внутриядерный ортомитоз;
6. Полузакрытый ортомитоз; 7. Открытый ортомитоз;
Предполагается, что сложный митотический процесс высших организмов развивался постепенно из механизмов деления прокариот.[20] Это предположение подтверждается тем, что прокариоты появились приблизительно на миллиард лет раньше первых эукариот. Кроме того, в митозе эукариот и бинарном делении прокариот принимают участие схожие белки.
Возможные промежуточные стадии между бинарным делением и митозом можно проследить у одноклеточных эукариот, у которых в ходе деления не разрушается ядерная оболочка. У большинства же других эукариот, в том числе растений и животных, веретено деления формируется вне ядра, а ядерная оболочка разрушается в течение митоза. Хотя митоз у одноклеточных эукариот ещё недостаточно изучен, можно предположить, что он произошёл от бинарного деления и в конечном счёте достиг того уровня сложности, который имеется у многоклеточных организмов[21].
У многих простейших эукариот митоз также остался процессом, связанным с мембраной, однако теперь уже неплазматической, а ядерной.[22] Возможно, в связи с увеличением размера и числа хромосом, структура типамезосомы разделилась на два элемента: ЦОМТ на ядерной оболочке и кинетохор на хромосоме. Для соединения данных структур между собой в процессе эволюции развилась промежуточная система микротрубочек. В рамках данного представления, наиболее древним и примитивным считается закрытый внутриядерный плевромитоз. Сегрегация хромосом при этом происходит путём расхождения ЦОМТ, к которым хромосомы крепятся посредством микротрубочек. В свою очередь ЦОМТ закреплены на ядерной оболочке и расходятся за счёт роста ядерной мембраны между ними.[23]
От разных вариантов закрытого внутриядерного плевромитоза, вероятно, берут своё начало несколько параллельных эволюционных линий.[23] В качестве эволюционно прогрессивных признаков при этом рассматриваются: распад ядерной оболочки во время митоза; переход ЦОМТ из ядра в цитоплазму; образование биполярного веретена; усиление спирализации хромосом; формирование экваториальной пластинки в метафазе. Таким образом, эволюция митотического деления идёт в направлении от закрытого внутриядерного плевромитоза к открытому ортомитозу.[24]
Регуляция митоза
Основными регулято́рными механизмами митоза являются процессы фосфорилирования и протеолиза[25]. Обратимые реакции фосфорилирования и дефосфорилирования обеспечивают протекание обратимых событий митоза, таких как сборка/распад веретена деления или распад/восстановление ядерной оболочки. Протеолиз лежит в основе необратимых событий митоза, таких как разделение сестринских хроматид в анаф
15)Механизм движения клетки
Вращение мотора вызывает пассивное вращение филамента. Более массивная клетка начинает вращаться примерно со скоростью 1/3 от скорости жгутика и в обратном направлении, а также приобретает поступательное движение.
Подавляющее большинство наделённых жгутиком бактерий имеют палочковидную форму. Из гидродинамических расчётов следует, что для наиболее эффективного движения отношение длины клетки к ширине должно составлять 3,7. Движение кокков крайне неэффективно, поэтому они чаще всего неподвижны.
У ряда бактерий мотор и жгутик могут вращаться только в одном направлении, переориентация происходит при остановке за счёт броуновского движения. Бактерии-перитрихи собирают при движении все свои жгутики (каждый из которых вращается против часовой стрелки) в один пучок. Для совершения кувырка они либо меняют направление вращения, либо изменяют его скорость, из-за чего пучок распадается. При полярном расположении жгутиков один из них может служить и толкающим, и тянущим приспособлением в зависимости от направления вращения.
Скорости движения бактерий варьируют от 20 мкм/с у некоторых Bacillus до 200 мкм/с у Vibrio.
16.
Сперматозо́ид (от др.-греч. σπέρμα (род. п. σπέρματος) — семя, ζωή — «жизнь» и εἴδος — «вид») — мужская половая клетка, мужская гамета, которая служит для оплодотворения женской гаметы, яйцеклетки. Термин используется для обозначения мелких, обычно подвижных гамет у организмов, которым свойственна оогамия. Обычно они значительно меньше яйцеклетки, поскольку не содержат столь значительного количества цитоплазмы и производятся организмом одновременно в значительном количестве. Понятие «сперматозоид» необходимо отличать от понятия «сперма», поскольку последняя состоит из семенной жидкости (в которой содержатся сперматозоиды), а также содержит небольшое количество эпителиальных клетокмочеиспускательного канала. Синонимы: живчик, иногда спермий. Обычно (особенно в ботанике) спермиями называют сперматозоиды, лишенные жгутиков.
Строение и функция
Строение сперматозоида
Сперматозоид человека — это специализированная клетка, строение которой позволяет ей выполнить свою функцию: преодолеть половые пути женщины и проникнуть в яйцеклетку, чтобы внести в неё генетический материал мужчины. Сперматозоид, сливаясь с яйцеклеткой, оплодотворяет её.
В организме человека сперматозоид является самой маленькой клеткой тела (если учитывать только саму головку без хвостика). Общая длина сперматозоида у человека равна приблизительно 55 мкм. Головка составляет приблизительно 5,0 мкм в длину, 3,5 мкм в ширину и 2,5 мкм в высоту, средний участок и хвостик — соответственно, приблизительно 4,5 и 45 мкм в длину.[1]
Малые размеры, вероятно, необходимы для быстрого движения сперматозоида. Для уменьшения размера сперматозоида при его созревании происходят специальные преобразования: ядро уплотняется за счет уникального механизма конденсации хроматина (из ядра удаляются гистоны, и ДНК связывается с белками-протаминами), большая часть цитоплазмы выбрасывается из сперматозоида в виде так называемой «цитоплазматической капли», остаются только самые необходимые органеллы.
Сперматозоид мужчины имеет типичное строение и состоит из головки, средней части и хвоста.
Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка, поэтому иногда говорят о «ложковидной» форме головки сперматозоида у человека. В головке сперматозоида располагаются следующие клеточные структуры:
·Ядро, несущее одинарный набор хромосом. Такое ядро называют гаплоидным. После слияния сперматозоида и яйцеклетки (ядро которой также гаплоидно) образуется зигота — новый диплоидный организм, несущий материнские и отцовские хромосомы. При сперматогенезе (развитии сперматозоидов) образуются сперматозоиды двух типов: несущие X-хромосому и несущие Y-хромосому. При оплодотворении яйцеклетки X-несущим сперматозоидом формируется эмбрион женского пола. При оплодотворении яйцеклетки Y-несущим сперматозоидом формируется эмбрион мужского пола. Ядро сперматозоида значительно мельче ядер других клеток, это во многом связано с уникальной организацией строения хроматина сперматозоида (см. протамины). В связи с сильной конденсацией хроматин неактивен — в ядре сперматозоида не синтезируется РНК.
·Акросома — видоизмененная лизосома — мембранный пузырек, несущий литические ферменты — вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объёма головки и по своему размеру приблизительно равна ядру. Она лежит спереди от ядра и покрывает собой половину ядра (поэтому часто акросому сравнивают с шапочкой). При контакте с яйцеклеткой акросома выбрасывает свои ферменты наружу и растворяет небольшой участок оболочки яйцеклетки, благодаря чему образуется небольшой «проход» для проникновения сперматозоида. В акросоме содержится около 15 литических ферментов, основным из который является акрозин.
·Центросома — центр организации микротрубочек, обеспечивает движение хвоста сперматозоида, а также предположительно участвует в сближении ядер зиготы и первом клеточном делении зиготы.
Позади головки располагается так называемая «средняя часть» сперматозоида. От головки среднюю часть отделяет небольшое сужение — «шейка». Позади средней части располагается хвост. Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион — гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.
Хвост, или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее её. Хвост — орган движения сперматозоида. Его строение типично для клеточных жгутиков эукариот.
17.
Яйцеклетка (науч. ооцит, реже. овоцит) — женская гамета животных, высших растений, а также многих водорослей и другихпротистов, которым свойственна оогамия. Как правило, яйцеклетки — гаплоидные клетки, но могут иметь другую плоидность уполиплоидных организмов.
Человеческая яйцеклетка имеет диаметр примерно 130 мкм и весит 1.15 нанограмм.
В цитоплазме яйцеклеток (ооплазме) содержатся совокупность питательных веществ — желток.
Яйцеклетки образуются в результате оогенеза. После оплодотворения из оплодотворенной яйцеклетки (зиготы) развиваетсяэмбрион. При партеногенезе эмбрион, а затем новый организм развивается из неоплодотворенной яйцеклетки.
Строение яйцеклетки представлено на рисунке.
1.Ядро
2.Цитолемма
3.Фолликулярный эпителий
4.Лучистый венец
5.Кортикальные гранулы
6.Желточные включения
7.Блестящая зона
8.Рецептор во фракции Zp 3-N-ацетилглюкозоамин
Яйцеклетка перемещается в ампуле реснитчатым движением клеток эпителия и ритмичной перистальтикой маточной трубы.
Яйцеклетка окружена прозрачной оболочкой (zona pellucida) и лучистым венцом (corona radiata) несет 23 хромосомы.
Особенности строения половой клетк и
Строение яйцеклетки во многом обусловлено содержанием в ней компонентов, необходимых для осуществления биосинтеза белка. К ним относятся рибосомы, ферменты, т-РНК, м-РНК и их предшественники. Особые регуляторные вещества, контролирующие процессы, происходящие с самой яйцеклеткой в разный период ее жизни, играют важнейшую роль в дезинтеграции оболочки ядра. Желток яйцеклетки содержит белки, различные жиры, фосфолипиды, минеральные соли. Он обеспечивает полноценное питание зародыша. Особенности строения яйцеклетки: ее ядро содержит гаплоидный набор хромосом (23), а в ее цитоплазме находится большое количество митохондрий, элементы эндоплазматического ретикулума, свободные рибосомы, желточные включения и РНК. По периферии ядра располагаются кортикальные гранулы.
Строение яйцеклетки человек а
Яйцеклетка имеет специфические оболочки, выполняющие защитные функции и препятствующие проникновению в нее нескольких сперматозоидов. Они также облегчают имплантацию зародыша в стенке матки. Яйцеклетка чаще всего имеет шарообразную форму. Она содержит весь набор таких типичных органелл, какие имеет любая клетка. Яйцеклетка окружена плазматической мембраной, а снаружи покрыта блестящей оболочкой, которая состоит из мукополисахаридов. На ней находится так называемый лучистый венец или по-другому – фолликулярная оболочка, представляющая собой микроскопические ворсинки фолликулярной клетки. Она играет важнейшую защитную и питательную функцию. Только воздействие нескольких сперматозоидов способно разрушить внешнюю оболочку яйцеклетки. После такой «атаки» только один или в крайнем случае двое из них оплодотворяют ее. Яйцеклетка не имеет своего аппарата активного движения. На преодоление расстояния в 10 см, которое она проходит по яйцеводу до матки, ей требуется 4-7 дней. Яйцеклетке присуща плазматическая сегрегация, означающая то, что с момента оплодотворения до дробления яйца в ней происходит равномерное распределение цитоплазмы. Благодаря этому процессу в дальнейшем все клетки будущих тканей будут получать ее в необходимом количестве.
18. Сперматогене́з — развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза.
Сперматозоиды развиваются из клеток-предшественников, которые проходят редукционные деления (деления мейоза) и формируют специализированные структуры (акросома, жгутик и пр.). В разных группах животных сперматогенез различается. У позвоночных животных сперматогенез проходит по следующей схеме: в эмбриогенезе первичные половые клетки — гоноциты мигрируют в зачаток гонады, где формируют популяцию клеток, называемых сперматогониями. С началом полового созреваниясперматогонии начинают активно размножаться, часть из них дифференцируется в другой клеточный тип —сперматоциты I порядка, которые вступают в мейоз и после первого деления мейоза дают популяцию клеток, называемых сперматоцитами II порядка, проходящих впоследствии второе деление мейоза и образующих сперматиды; путём ряда преобразований последние приобретают форму и структуры сперматозоида в ходе спермиогенеза.
Сперматогенез у человека
Схема поперечного сечения семенного канальца
Сперматогенез у человека в норме начинается в пубертатном периоде (около 12 лет) и продолжается до глубокой старости. Продолжительность полного сперматогенеза у мужчин составляет примерно 73—75 дней. Один цикл зародышевого эпителия составляет приблизительно 16 дней
Сперматозоиды образуются в яичках, а именно в извитых семенных канальцах. Стенка семенного канальца делится базальной мембраной на люминальную и адлюминальную стороны. На люминальной стороне расположены клетки Сертоли (сустентоциты) и предшественники половых клеток (сперматогонии, сперматоциты I и II порядков и сперматиды).
Сперматогонии, лежащие непосредственно на базальной мембране извитых семенных канальцев, проходят несколько последовательных стадий митотического деления. Общее количество сперматогоний в яичке мужчины составляет около 1 млрд. Различают две основные категории сперматогоний: А и В. Сперматогонии А, которые делятся митотически, сохраняют способность к делению и поддерживают свою популяцию. Остальные дефференцируются в сперматогоний В, которые «эвакуируются» клеточными контактами сустентоцитов (образуют под основанием половой клетки новый контакт и резорбируют старый). Сперматогония В делится митотически, дифференцируясь в сперматоцит I порядка, вступающий в мейоз.
В результате первого деления мейоза образуются две дочерние клетки сперматоциты второго порядка, каждый из которых содержит гаплоидный набор (23 у человека) d-хромосом . Вторичные сперматоциты расположены ближе к просвету канальца. Во втором делении мейоза образуются две сперматиды. Таким образом, в результате деления одной сперматогонии образуются четыре сперматиды, каждая из которых обладает гаплоидным набором хромосом.
В ходе сложного процесса спермиогенеза сперматиды дифференцируются в зрелые сперматозоиды. Дифференцирующиеся сперматиды лежат в углублениях плазматической мембраны клеток Сертоли. При спермиогенезе комплекс Гольджи формирует акросому, содержащую протеолитические ферменты , которые при контакте с яйцеклеткой растворяют участок её блестящей оболочки (zona pellucida).
Сложный процесс сперматогенеза регулируется гонадотропными гормонами гипофиза и стероидными гормонами яичка. После полового созревания гипоталамус начинает выделять гонадотропный рилизинг-гормон, под влиянием которого гипофиз секретирует фолликулостимулирующий гормон (ФСГ), стимулирующий развитие и функционирование клетки Сертоли и лютеинизирующий гормон (ЛГ), стимулирующий клетки Лейдига к выработке тестостерона. Тестостерон оказывает воздействие на развитие клеток Сертоли, а также на предшественники половых клеток (в ассоциации с андроген-связывающим белком, выделяемым клетками Сертоли).
Секреторная активность гипофиза регулируется клетками Сертоли и клетками Лейтига. Тестостерон, выделяемый клетками Лейдига подавляет активность гипофиза к выработке ЛГ и ФСГ. Ингибин и эстрадиол, образующийся в клетках Сертоли, подавляют гипофиз к выработке ФСГ и клетки Лейдига к выработке тестостерона. Морфофункциональное состояние яичка регулируется гормонами аденогипофиза — ФСГ и ЛГ, причём уровень гормонов постоянный, имеются лишь незначительные колебания.
19. Овогенез — это процесс образования женских половых гамет, идет по той же схеме, что исперматогенез, но с некоторыми существенными отличиями.
В результате неравномерного распределения цитоплазмы как при первом, так и при втором делениях мейоза только в одной клетке оказывается большой запас питательных веществ, необходимых для развития будущего зародыша. Следовательно, образуется только одна зрелая яйцеклетка с гаплоидным набором хромосом (n) и три маленькие клеточки, которые впоследствии исчезают. При овогенезе наряду с мейозом происходит так называемоесозревание яйцеклетки, во время которого значительно увеличивается ее объем.
Овогенез
(лат. ovum - яйцо + греч. genesis-зарождение, происхождение, развитие), процесс развития женских половых клеток (гамет), заканчивающийся формированием яйцеклеток.
У женщины в течение менструального цикла созревает лишь одна яйцеклетка. Процесс овогенеза имеет принципиальное сходство со сперматогенезом и также проходит через ряд стадий: размножения, роста и созревания. Яйцеклетки образуются в яичнике, развиваясь из незрелых половых клеток -овогониев, содержащих диплоидное число хромосом. Овогонии, подобно сперматогониям, претерпевают последовательные митотические деления, которые завершаются к моменту рождения плода.
Затем наступает период роста овогониев, когда их называют овоцитами I порядка. Они окружены одним слоем клеток - гранулёзной оболочкой - и образуют так называемые примордиальные фолликулы. Плод женского пола накануне рождения содержит около 2 млн. этих фолликулов, но лишь примерно 450 из них достигают стадии овоцитов II порядка и выходят из яичника в процессе овуляции.
Созревание овоцита сопровождается двумя последовательными делениями, приводящими к уменьшению числа хромосом в клетке вдвое. В результате первого деления, мейоза, образуется крупный овоцит II порядка и первое полярное тельце, а после второго деления - зрелая, способная к оплодотворению и дальнейшему развитию яйцеклетка с гаплоидным набором хромосом и второе полярное тельце. Полярные тельца, представляющие собой мелкие клетки, не играют роли в овогенезе и в конечном счёте разрушаются. В отличие от образования спермиев у мужчин, которое начинается только в период полового созревания, образование яйцеклеток у женщин начинается ещё до их рождения и завершается для каждой данной яйцеклетки только после её оплодотворения. Поэтому любые неблагоприятные факторы внешней среды, начиная со стадии внутриутробного развития девочки, могут повлечь за собой генетические аномалии у её потомства.
20.
Половой процесс, или оплодотворение, или амфимиксис (др.-греч. ἀμφι- — приставка со значением обоюдности, двойственности и μῖξις — смешение) — процесс слияния гаплоидных половых клеток, или гамет, приводящий к образованию диплоидной клетки зиготы. Не следует смешивать это понятие с половым актом (встречей половых партнёров у многоклеточных животных).
Половой процесс закономерно встречается в жизненном цикле всех организмов, у которых отмечен мейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход от диплоидного состояния к гаплоидному), половой процесс — к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному).
Различают несколько форм полового процесса:
·изогамия — гаметы не отличаются друг от друга по размерам, подвижны, жгутиковые или амебоидные;
·анизогамия (гетерогамия) — гаметы отличаются друг от друга по размерам, но оба типа гамет (макрогаметы и микрогаметы) подвижны и имеют жгутики;
·оогамия — одна из гамет (яйцеклетка) значительно крупнее другой, неподвижна, деления мейоза, приводящие к её образованию, резко асимметричны (вместо четырёх клеток формируется одна яйцеклетка и два абортивных «полярных тельца»); другая (спермий, или сперматозоид) подвижна, обычно жгутиковая или амебоидная.
Биологическое значение амфимиксиса непосредственно связано с биологической сущностью определенных сторон процесса оплодотворения. Дарвин, открывший «великий закон природы», говорил о прогрессивном значении появления полового процесса в истории органического мира, рассматривая при этом перекрёстное опыление как источник обогащения наследственности. Благодаря бипариентальному наследованию (материнское — от яйцеклетки и отцовское — от спермия) в результате амфимиксиса получаются более жизнеспособные организмы, обладающие более широким спектром изменчивости по сравнению с апомиктичными растениями
Оплодотворение
слияние мужской половой клетки (сперматозоида) с женской (яйцом, яйцеклеткой), приводящее к образованию зиготы - нового одноклеточного организма. Биологический смысл оплодотворения состоит в объединении ядерного материала мужской и женской гамет, что приводит к объединению отцовских и материнских генов, восстановлению диплоидного набора хромосом, а также активации яйцеклетки, то есть стимуляции её к зародышевому развитию. Соединение яйцеклетки со сперматозоидом обычно происходит в воронкообразно расширенной части маточной трубы в течение первых 12 часов после овуляции.
Семенная жидкость, попадая во влагалище женщины при половом сношении, обычно содержит от 60 до 150 млн. сперматозоидов, которые, благодаря движениям со скоростью 2-3 мм в минуту, постоянным волнообразным сокращениям матки и труб и щелочной среде, уже спустя 1-2 минуты после полового акта достигают матки, а через 2-3 часа - концевых отделов маточных труб, где обычно и происходит слияние с яйцеклеткой. Различают моноспермное (в яйцеклетку проникает один сперматозоид) и полиспермное (в яйцеклетку проникают два и более сперматозоидов, но с ядром яйцеклетки сливается только одно ядро сперматозоида) оплодотворение. Сохранению активности спермиев во время прохождения их в половых путях женщины способствует слабощелочная среда шеечного канала матки, заполненного слизистой пробкой. Во время оргазма при половом акте слизистая пробка из шеечного канала частично выталкивается, а затем вновь втягивается в него и тем самым способствует более быстрому попаданию сперматозоидов из влагалища (где в норме у здоровой женщины среда слабокислая) в более благоприятную среду шейки и полости матки. Прохождению сперматозоидов через слизистую пробку шеечного канала способствует и резко повышающаяся в дни овуляции проницаемость слизи. В остальные дни менструального цикла слизистая пробка имеет значительно меньшую проницаемость для сперматозоидов.
Многие сперматозоиды, находящиеся в половых путях женщины, могут сохранять способность к оплодотворению 48-72 часа (иногда даже до 4-5 суток). Овулировавшая яйцеклетка сохраняет жизнеспособность примерно 24 часа. Учитывая это, наиболее благоприятным временем для оплодотворения считается период разрыва созревшего фолликула с последующим рождением яйцеклетки, а также 2-3-й день после овуляции. Женщинам, применяющим физиологический метод контрацепции, следует помнить о том, что сроки овуляции могут колеб
аться, а жизнеспособность яйцеклетки и сперматозоидов может быть значительно больше. Вскоре после оплодотворения начинается дробление зиготы и образование зародыша.
В последние годы для лечения бесплодия применяется метод экстракорпорального оплодотворения - оплодотворение яйцеклетки человека вне организма, культивирование её до определённой стадии и перенос эмбриона (зародыша) в матку. Абсолютным показанием для этого метода оплодотворения является трубное бесплодие, которое развивается вследствие непроходимости или отсутствия маточных труб. В случаях мужского бесплодия применяют инструментальное введение в половые пути женщины спермы мужа или донора с целью обеспечения у неё зачатия (см. Инсеминация искусссвенная).
(Источник: Сексологический словарь)
(сингамия), слияние муж. и жен. половых клеток (гамет) у растений, животных и человека, в результате чего образуется зигота, способная развиваться в новый организм. О. лежит в основе полового размножения и обеспечивает передачу наследственных признаков от родителей потомкам.
21)
22)
Дробле́ние —ряд последовательных митотическихделений оплодотворенного или инициированного к развитиюяйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезевсех многоклеточных животных. При этом масса зародышаи его объём не меняются, оставаясь такими же, как и в начале дробления.Яйцоразделяется на все более мелкие клетки—бластомеры. Характерная особенность дробления — ведущая регуляторная роль цитоплазмыв развитии. Характер дробления зависит от количества желткаи его расположения в яйце.
Голобластическое дробление.
тип равномерного дробления оплодотворенной яйцеклетки, при котором дочерние клетки имеют приблизительно одинаковые размеры.
Голобластическое дробление
характерно для гомолецитальных яиц. Плоскости дробления разделяют яйцо полностью. Они могут делить его на равные части, как у морской звезды или морского ежа, или же на неравные части, как у брюхоногого моллюска Crepidula. Дробление умеренно телолецитального яйца ланцетника происходит по голобластическому типу, однако неравномерность деления проявляется только после стадии четырех бластомеров. У некоторых клеток после этой стадии дробление становится крайне неравномерным; образующиеся при этом мелкие клетки называют микромерами, а крупные клетки, содержащие желток, – макромерами. У моллюсков плоскости дробления проходят таким образом, что начиная со стадии восьми клеток бластомеры располагаются по спирали; этот процесс регулируется ядром.
Меробластическое дробление
типично для телолецитальных яиц, богатых желтком; оно ограничено относительно небольшим участком у анимального полюса. Плоскости дробления не проходят через все яйцо и не захватывают желток, так что в результате деления на анимальном полюсе образуется небольшой диск клеток (бластодиск). Такое дробление, называемое также дискоидальным, свойственно пресмыкающимся и птицам.