Важность ионных канальцев мембраны
Так как через липидную пленку проникают только жирорастворимые вещества: газы, жиры и спирты, а клетке необходимо постоянно вводить и выводить водорастворимые вещества, к которым относятся ионы. Именно для этих целей служат транспортные белковые структуры, образованные двумя другими слоями мембраны.
Подобные белковые структуры состоят из 2 типов белков – каналоформеров, которые формируют отверстия в мембране и белков - транспортеров, которые с помощью ферментов цепляют к себе и проводят сквозь нужные вещества.
8) Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом — сигнальных веществ), передаваемых черезмежклеточное вещество.
Контакты простого типа:
·простые межклеточные соединения
·интердигитации (пальцевые соединения)
2.Контакты сцепляющего типа:
·десмосомы
·адгезивный поясок
3.Контакты запирающего типа:
·плотное соединение (запирающая зона)
4.Контакты коммуникационного типа:
·щелевидные соединения (нексусы)
·синапсы
Простое межклеточное соединение осуществляется путем сближения плазмолемм клеток до расстояния 15-20нм и взаимодействия белков плазматических мембран – кадгеринов.
Имеются разнообразные семейства кадгеринов, характерные для той или иной ткани. Благодаря кадгерину клетки в процессе гистогенеза и органогенеза узнают друг друга и объединяются в единую структуру, например, эпителиальный пласт. (Раковые клетки не узнают друг друга).
Пальцевидные соединения (интердигитации) образуются за счет взаимной инвагинации (впячивания) обеих плазмолемм в начале в одном, а затем в другом. Это один из трех видов контактов между кардиомиоцитами.
Десмосомапредставляет небольшое округлое образование, построенное с участием плазмолемм соседних клеток. Десмосомы построены из белка десмоплакина, который образует слой на внутренней стороне каждой мембраны. К слою десмоплакина присоединяются пучки промежуточных филаментов.
Промежуточные филаменты в разных тканях представлены разными белками, например, в эпителии – кератином, в мышечной – десмином. С наружной стороны мембраны пространство между десмосомами заполнено утолщенным слоем гликокаликса. Гликокаликс десмосом пронизан склеивающим (адгезивным) белком – десмоглеином.
Адгезивный поясок встречается в однослойных эпителиях, имеет вид двойных лент. По структуре адгезивный поясок похож на десмосому, но образован другими белками.
Плотное соединение образуется с помощью интегральных адгезивных белков. В таких контактах плазмолеммы плотно прилегают друг к другу. Плотные соединения также имеют лентовидную форму. Однако ленты имеют вид ячеистой сети. Плотные контакты надежно разграничивают компартменты, находящиеся с базальной и апикальной (верхушечной) сторон однослойного эпителия. Контакты в виде плотных соединений имеются вэндотелиисосудов.
9) Включения — это непостоянные компоненты цитоплазмы, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения.
Трофические включения (trophe — пища) — наиболее значительная группа, это запасные питательные вещества, за счет которых клетки живут и строят свое тело. Однако они имеют значение не только для данной клетки, но и для других клеток и тканей организма. Среди трофических включений особенно важную роль играют жиры и углеводы. В виде жира запасный питательный материал откладывается в основном в клетках жировой ткани. Внешний вид этих клеток сильно изменяется в зависимости от степени отложения жира. Последний в цитоплазме появляется в виде мелких капелек, затем они увеличиваются и сливаются в одну огромную каплю, занимающую центральное положение в клетке, цитоплазма и ядро при этом оттесняются к периферии.
Трофические включения в виде жира характерны также для эпителиальных клеток кишечника и др. При голодании животного запасной жир расходуется прежде всего. Включения типа углеводов очень распространены в клетках растений (крахмал и сахар). В организме животных углеводы отлагаются в форме гликогена (животный крахмал). Особенно богаты им клетки печени и мышечная ткань. Белки в виде запасных питательных веществ у животных встречаются очень редко. Их находят в клетках печени в виде разнообразной формы и величины зернышек и в женских половых клетках в виде желточных зерен. Некоторые витамины находятся в клетке в виде микроскопически видимых включений.
Секреторные включения являются продуктами жизнедеятельности клеток желез внешней и внутренней секреции. К ним относятся ферменты, гормоны, слизь и другие вещества, подлежащие выведению из клетки.
Экскреторные включенияпредставляют собой продукты обмена веществ в растительных и животных клетках (кристаллы щавелевой кислоты, щавелевокислого кальция и др.).
Пигментные включения придают клеткам и тканям определенную окраску. В клетках у млекопитающих особенно распространены пигменты —меланины, обусловливающие черную и коричневую окраску, липохромы, имеющие желтую или красную окраску, и др. Клетки с боль-шим количеством этих включений называют пигментными. Они разбросаны поодиночке в отдельных местах организма или, скопляясь в больших количествах, образуют пигментную ткань. Иногда пигментные включения появляются в нервных клетках.
Секреты и инкреты — включения многих железистых клеток. Секреты —это слюна, желчь и т. д. К инкретам относят физиологически активные вещества —гормоны, выделяемые органами внутренней секреции: щитовидной и зобной железами, надпочечниками, гипофизом и др. Одни гормоны влияют на рост организма, другие — на обмен веществ, третьи — на работу половых желез и т. д.
Экскреты — конечные продукты жизнедеятельности клеток. Они обычно выводятся из клетки, но могут иногда задерживаться в ней довольно длительное время.
10) Эндоцито́з (англ. endocytosis) — процесс захвата (интернализации) внешнего материала клеткой, осуществляемый путём образования мембранных везикул. В результате эндоцитоза клетка получает для своей жизнедеятельности гидрофильный материал, который иначе не проникает через липидный бислой клеточной мембраны. Различают фагоцитоз, пиноцитоз и рецептор-опосредованный эндоцитоз. Термин был предложен в 1963 году бельгийским цитологом Кристианом де Дювом для описания множества процессов интернализации, развившихся в клетке млекопитающих.[1]
ТИПЫ
Фагоцитоз (поедание клеткой) — процесс поглощения клеткой твёрдых объектов, таких как клетки эукариот, бактерии, вирусы, остатки мёртвых клеток и т. п. Вокруг поглощаемого объекта образуется большая внутриклеточная вакуоль (фагосома). Размер фагосом — от 250 нм и больше. Путем слияния фагосомы с первичной лизосомой образуется вторичная лизосома. В кислой среде гидролитическиеферменты расщепляют макромолекулы, оказавшиеся во вторичной лизосоме. Продукты расщепления (аминокислоты, моносахариды и прочие полезные вещества) транспортируются затем через лизосомную мембрану в цитоплазму клетки. Фагоцитоз распространен очень широко. У высокоорганизованных животных и человека процесс фагоцитоза играет защитную роль. Фагоцитарная деятельность лейкоцитови макрофагов имеет огромное значение в защите организма от попадающих в него патогенных микробов и других нежелательных частиц. Фагоцитоз впервые описал русский ученый И. И. Мечников.
·Пиноцитоз (питьё клеткой) — процесс поглощения клеткой жидкой фазы из окружающей среды, содержащей растворимые вещества, включая крупные молекулы (белки, полисахариды и др.). При пиноцитозе от мембраны отшнуровываются внутрь клетки небольшие пузырьки — эндосомы. Они меньше фагосом (их размер до 150 нм) и обычно не содержат крупных частиц. После образования эндосомы к ней подходит первичная лизосома, и эти два мембранных пузырька сливаются. Образовавшаяся органелла носит название вторичной лизосомы. Процесс пиноцитоза постоянно осуществляют все эукариотическме клетки.
·Рецептор-опосредованный эндоцитоз — активный специфический процесс, при котором клеточная мембрана выпучивается внутрь клетки, формируя окаймлённые ямки. Внутриклеточная сторона окаймлённой ямки содержит набор адаптивных белков (адаптин, клатрин, обуславливающий необходимую кривизну выпучивания, и др. белки). Макромолекулы, связывающиеся со специфическими рецепторами на поверхности клетки, проходят внутрь со значительно большей скоростью, чем вещества, поступающие в клетки за счет пиноцитоза. Внешняя сторона мембраны при этом включает специфические рецепторы (например, ЛПНП-рецептор). При связывании лиганда из окружающей клетку среды окаймлённые ямки формируют внутриклеточные везикулы (окаймлённые пузырьки). Рецептор-опосредованный эндоцитоз включается для быстрого и контролируемого поглощения клеткой соответствующего лиганда (например, ЛПНП). Эти пузырьки быстро теряют свою кайму и сливаются между собой, образуя более крупные пузырьки — эндосомы. После чего эндосомы сливаются с первичными лизосомами, в результате чего формируются вторичные лизосомы. Например, когда животной клетке необходим холестерин для синтеза мембраны, она экспрессирует ЛПНП-рецепторы на плазматической мембране. Богатые холестерином и эфирами холестерина ЛПНП, связавшиеся с ЛПНП-рецепторами, быстро доставляют холестерин в клетку.
Распространенность
Типичный эндоцитоз встречается у эукариот, лишенных клеточной стенки — животных и многих протистов. Долгое время считалось. что прокариоты полностью лишены способности к эндоцитозу. Однако в 2010 году эндоцитоз был описан у бактерий рода Gemmata[2]
Экзоцитоз (от греч. Έξω — внешний и κύτος — клетка) — у эукариот клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с внешней клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клетки этим способом.
У прокариот везикулярный механизм экзоцитоза не встречается, у них экзоцитозом называют встраивание белков в клеточную мембрану (или в наружную мембрану у грамотрицательных бактерий), выделение белков из клетки во внешнюю среду или в периплазматическое пространство.
Экзоцитоз может выполнять три основные задачи:
·доставка на клеточную мембрану липидов, необходимого для роста клетки;
·высвобождение различных соединений из клетки, например, токсичных продуктов метаболизма или сигнальных молекул (гормонов или нейромедиаторов);
·доставка на клеточную мембрану функциональных мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки.
Этапы
Различают следующие этапы экзоцитоза:
·Транспортировка везикулы от места синтеза и формирования (аппарат Гольджи) до места доставки осуществляется моторными белками вдоль актиновыхфиламентов либо микротрубочек цитоскелета. Этот этап может потребовать перемещения секретируемого материала на значительное расстояние, как, например, внейроне. Когда везикула достигает места секреции, она входит в контакт со специфическими удерживающими факторами клеточной мембраны.
·Удержание доставленной везикулы обеспечивается относительно слабыми связями на расстоянии более 25 нм и может служить, например, для концентрирования синаптических везикул около пресинаптической мембраны.
·Стыковка везикулы с мембраной является непосредственным продолжением первой фазы доставки, когда мембрана везикулы входит в близкий контакт с мембраной клетки (5-10 нм). Это включает прочное соединение белковых компонентов обеих мембран, вызванным внутримолекулярными перестановками, и предваряет формирования SNARE комплекса.
·Стимуляция (прайминг) везикулы фактически соответствует образованию особого SNARE комплекса между двумя мембранами и осуществляется только в случае нейронального экзоцитоза. Этот этап включает процессы молекулярных перестановок и АТФ-зависимые модификации белков и липидов, происходящие непосредственно до слияния мембран в ответ на подъём уровня свободного кальция. Этот кальций-зависимый процесс необходим для контролируемого быстрого выброса нейромедиатора и отсутствует в случае конститутивного экзоцитоза.
·Слияние мембраны везикулы с мембраной клетки приводит к высвобождению, или выбросу, содержания секретируемой везикулы во внеклеточное пространство и объединению липидного бислоя везикулы с внешней мембраной. В случае синаптического выброса процесс слияния, так же как и стимуляция, осуществляется SNARE комплексом.
11)
Клеточный цикл — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или гибели
Длительность клеточного цикла эукариот
Длительность клеточного цикла у разных клеток варьируется. Быстро размножающиеся клетки взрослых организмов, такие как кроветворные или базальные клетки эпидермиса и тонкой кишки, могут входить в клеточный цикл каждые 12—36 ч. Короткие клеточные циклы (около 30 мин) наблюдаются при быстром дроблении яициглокожих, земноводных и других животных. В экспериментальных условиях короткий клеточный цикл (около 20 ч) имеют многие линии клеточных культур. У большинства активно делящихся клеток длительность периода между митозами составляет примерно 10—24 ч.