Билет №23. Репликационный аппарат клетки
Способность к самокопированию (репликации) – одно из основных свойств живого
Репликон - единица репликации. Это - фрагмент ДНК от точки начала репликации до точки ее окончания.
ДНК-полимераза синтезирует ДНК только в одном направлении: от 5'- конца к 3'-концу, перемещаясь вдоль ДНК-матрицы в направлении 3'->5'.
Инициаторные белки присоединяются к специфическим последовательностям ДНК в точках начала репликации и способствуют образованию репликационной вилки
Точки начала репликации - специфические нуклеотидные последовательности размером около 300 нуклеотидов.
В начале репликации с помощью фермента геликазы двойная спираль ДНК расплетается в отдельных зонах
Репликационный глазок - небольшой участок, где цепи ДНК отделились друг от друга и были использованы в качестве матрицы.
Дестабилизирующие белки выпрямляют данный участок ДНК
ДНК-топоизомеразы устраняют проблему супервитков
ДНК-полимераза - основной фермент репликации - способна только добавлять новые нуклеотиды к уже имеющимся на 3' конце
Праймер — короткая нуклеотидная РНК-овая последовательность, комплементарно связанная с однонитевой ДНК; с его 3′-конца ДНК-полимераза начинает наращивать цепь.
РНК-праймаза синтезирует праймеры (РНК-затравки)
У эукариот праймеры состоят приблизительно из 10 нуклеотидов
ДНК-лигаза удаляет РНК-затравку и сшивает фрагменты Оказаки в единую цепь. База соответствует одной паре нуклеотидов
Билет №24. Роль ядра в явлениях наследственности и изменчивости
Ядро— это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Образование субъединиц рибосом также происходит в ядре в специальных образованиях - ядрышках. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Если хроматин упакован плотно, его называют гетерохроматином, он хорошо видим под микроскопом. Если хроматин упакован неплотно, его называют эухроматин. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. От цитоплазмы ядро отделено ядерной оболочкой. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Ядрышко - сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. Оно формируется только в интерфазе в определенных участках некоторых хромосом - ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом. Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Билет №25. Онтогенез его периодизация. Общая характеристика эмбрионального периода. Роль наследственности и среды в онтогенезе. Критические периоды эмбрионального развития.
Онтогене́з (от греч. οντογένεση: ον — существо и γένεση — происхождение, рождение) — индивидуальное развитие организма от оплодотворения (при половом размножении) или от момента отделения от материнской особи (при бесполом размножении) до смерти.У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.У семенных растений к эмбриональному развитию относят процессы развития зародыша, происходящие в семени.Термин «онтогенез» впервые был введен Э. Геккелем в 1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.
Онтогенез делится на два периода:
1. эмбриональный — от образования зиготы до рождения или выхода из яйцевых оболочек;
2. постэмбриональный — от выхода из яйцевых оболочек или рождения до смерти организма.
В эмбриональном периоде выделяют три основных этапа: дробление, гаструляцию и первичный органогенез. Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, гисто- и органогенеза.
Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой (зародыш однослойный). При этом масса зародыша и его объем не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся все более мелкими, то-есть меняются ядерно-плазменные отношения: ядро остается таким же, а объем цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце. Если желтка мало и он равномерно распределен в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится все яйцо. Если желток распределен неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком. При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы). При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окруженные небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).
Гаструляция (впячивание) — гаструла формируется в результате инвагинации клеток. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.
Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы