Принцип дополнительности и соотношение неопределенностей
Еще один физический принцип - принцип дополнительности - возник из попыток осознать причину появления противоречивых наглядных образов, которые приходится связывать с объектами микромира.
В ряде экспериментов электрон и другие элементарные частицы обнаруживают корпускулярные свойства, то есть свойства частиц. Любое устройство для детектирования микрообъектов всегда регистрирует их как нечто целое, локализованное в очень малой области пространства.
С другой стороны, при движении все микрочастицы обнаруживают типичные волновые свойства. Наблюдается интерференция (наложение волн друг на друга) и дифракция (огибание волнами препятствий) частиц на кристаллических решетках или искусственно созданных препятствиях. Электрон и другие частицы ведут себя подобно волнам, огибающим препятствия, и как бы одновременно проходят через несколько щелей дифракционной решетки.
Таким образом, всем микрообъектам присущ корпускулярно-волновой дуализм. Общий ответ на вопрос о том, каким же образом совмещаются эти противоречивые свойства у одного объекта, был дан Н. Бором.
Прежде всего, подчеркивает Бор, нужно ясно осознать, что все приборы, регистрирующие индивидуальные акты в микромире, являются макроскопическими и иными быть не могут. Наши органы чувств не воспринимают микропроцессов. Сам человек - существо макроскопическое. Отсюда следует, что понятия, которыми мы пользуемся для описания явлений, -это макроскопические понятия, в терминах которых описывается работа приборов. Но эти понятия не могут быть полностью применены к микрообъектам, так как их поведение не подчиняется законам классической механики.
Согласно принципу дополнительности Бора, для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий (частиц и волн). Только совокупность таких понятий дает исчерпывающую информацию об этих явлениях как о целостных.
Принцип дополнительности является результатом философского осмысления новой необычной физической теории -квантовой механики. Он выражает на макроскопическом уровне один из основных законов диалектики - закон единства противоположностей.
Частным выражением принципа дополнительности является соотношение неопределенностей Гейзенберга.
Говоря о частице, мы представляем себе комочек вещества, находящийся в данный момент в определенном месте, обладающий определенной энергией и движущийся со строго определенной скоростью. При этом мы допускаем, что можно абсолютно точно знать координаты, импульс и энергию частицы в любой момент времени.
Однако, связывая частицу с волной, мы переходим к образу неограниченной синусоиды, простирающейся во всем пространстве. И понятия «длина волны в данной точке», «импульс в данной точке» просто не могут иметь смысла. Также не имеет смысла понятие энергии частицы в данный момент времени. Дело в том, что согласно формуле Планка, энергия связана с частотой волны, которая характеризует происходящий во времени гармонический колебательный процесс. Утверждение, что электрон лишь приближенно может рассматриваться как материальная точка, означает, что его координаты, импульс и энергия могут быть заданы лишь приблизительно. Количественно это выражается соотношением неопределенностей Гейзенберга.
Согласно этому соотношению, чем точнее фиксирован импульс, тем большая неопределенность будет в значении координаты. Также соотносятся энергия и время. Точность измерения энергии обратно пропорциональна длительности процесса измерения. Причина этого во взаимодействии прибора с объектом измерения.
Принцип неопределенности показывает, почему невозможно «падение» электрона на ядро атома. Ядро атома имеет очень малые размеры и при «падении» электрона местоположение последнего оказывается весьма точно определенным. Следовательно, резко увеличивается неопределенность в скорости электрона, разброс в значении скоростей станет весьма большим. В этот разброс будут включаться столь большие скорости, что электрон скорее покинет атом, чем упадет на ядро.
ПРИНЦИП СУПЕРПОЗИЦИИ
Этот принцип также имеет важное значение в физике и особенно - в квантовой механике. Принцип суперпозиции (наложения) - это допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Принцип суперпозиции выполняется лишь в условиях, когда воздействующие явления не влияют друг на друга. Встречный ветер тормозит движение автомашины по закону параллелограмма -принцип суперпозиции в этом случае выполняется полностью. Но если песок, поднятый ветром, ухудшит работу двигателя, то в этом случае принцип суперпозиции выполняться не будет. Вообще, в ньютоновской физике этот принцип не универсален и во многих случаях выполняется лишь приближенно.
В микромире, наоборот, принцип суперпозиции - фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. В квантовой теории принцип суперпозиции лишен наглядности, характерной для классической механики, так как в квантовой теории в суперпозиции складываются альтернативные, с классической точки зрения, исключающие друг друга состояния.
В релятивистской квантовой теории, предполагающей взаимное превращение частиц, принцип суперпозиции должен быть дополнен принципом суперотбора. Простейший пример - при аннигиляции электрона и позитрона принцип суперпозиции дополняется принципом сохранения электрического заряда - до и после превращений сумма зарядов должна быть постоянной. Поскольку заряды электрона и позитрона равны и взаимно противоположны, должна возникать незаряженная частица, каковой и является рождающийся в этом процессе аннигиляции фотон.
А теперь ненадолго вернемся к принципам симметрии, которые, как мы уже знаем, лежат в основе законов сохранения физических величин, и в частности, в основе фундаментального закона сохранения энергии. Он выводит нас еще в одну область физики - термодинамику.
ОСНОВЫ ТЕРМОДИНАМИКИ
Закон сохранения энергии называют еще первым началом термодинамики. Это фундаментальный закон, согласно которому важнейшая физическая величина - энергия - сохраняется неизменной в изолированной системе. Науке сегодня не известна ни одна причина, которая могла бы привести к нарушению этого закона. Иначе можно было бы создать вечный двигатель - давнюю мечту человечества, двигатель, создающий энергию из ничего. В изолированной системе, согласно этому закону, энергия может только превращаться из одной формы в другую, но ее количество всегда остается постоянным. Если система не изолирована, энергия может изменяться за счет обмена между частями системы или разными системами. Например, ежедневно мы сталкиваемся с тем, что чайник, охлаждаясь, нагревает воздух.
Когда мы говорим о сохранении энергии, мы имеем в виду механическую, тепловую и внутреннюю энергии, то есть энергию, зависящую лишь от термодинамического состояния. Она складывается из движения атомов, энергии химических связей и других типов энергий, связанных с состоянием электронов в молекулах.
Следует отметить, что для макроскопических систем энергия не является непосредственно измеряемой величиной, хотя современная физика дает довольно подробную картину молекулярного строения макроскопического объекта, а теоретическая и экспериментальная физика позволяет различными методами определить уровни энергии или их разности для частиц в системе. Однако до настоящего времени отсутствуют способы непосредственного измерения самой энергии системы в целом. Термодинамика позволяет с точностью до некоторой неопределенной постоянной вычислить эту величину из опытных данных. Для этого следует учесть теплообмен системы с окружающей средой и измерить работу, совершаемую системой.
Первый закон термодинамики гласит: тепло, сообщенное системе, расходуется на увеличение ее внутренней энергии и на совершение работы против внешних сил. Например, если вы поместите градусник, используемый для измерения температуры тела, в стакан с водой с температурой 50° С, то через несколько минут вы услышите характерный звон разбитого стекла: это ртуть, расширившись (а расширение связано с увеличением межатомных расстояний, то есть с увеличением внутренней энергии ртути), и не имея выхода, надавила на стекло резервуара и совершила работу, разрушив его.
Первый закон термодинамики более известен в другой редакции, абсолютно эквивалентной первой: нельзя построить периодически действующую машину, которая бы совершала работу, больше подводимой к ней извне энергии (или - вечный двигатель первого рода невозможен).
Существование вечного двигателя второго рода запрещает второе начало термодинамики. Вечный двигатель второго рода - это циклически действующая машина, способная совершать работу за счет переноса тепла от холодного тела к горячему. Это не запрещено первым началом термодинамики, но практически невозможно.
Второе начало термодинамики указывает на существование двух различных форм энергии - теплоты (связанной с неупорядоченным, хаотическим движением) и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло - вспомните, как наши предки добывали огонь. В то же время тепло в эквивалентную ему работу полностью превратить нельзя. Другими словами, неупорядоченную форму энергии невозможно полностью перевести в упорядоченную. Мерой неупорядоченности, или мерой хаоса, в термодинамике является энтропия. Энтропия не бывает отрицательной, она всегда положительна, за исключением случая, когда идеальный кристалл находится при абсолютном нуле (но на этот счет есть третье начало термодинамики, говорящее о недостижимости абсолютного нуля, равного -273° С), что невозможно. Иногда используется отрицательная величина энтропии - негэнтропш, которая является мерилом упорядоченности системы. Эта величина может быть только отрицательным числом. Рост негэнтропии соответствует возрастанию порядка, энтропии - росту хаоса.
Таким образом, в соответствии со вторым началом термодинамики, в случае изолированной системы (то есть системы, не обменивающейся энергией с окружающей средой) неупорядоченное состояние не может самостоятельно перейти в упорядоченное. При нагревании тела энтропия увеличивается, растет степень неупорядоченности. В изолированной системе энтропия может только расти.
Так мы сталкиваемся с принципом возрастания энтропии -важнейшим принципом термодинамики. Он соответствует стремлению любой системы к состоянию термодинамического равновесия, которое можно отождествить с хаосом.
Из этого принципа следует идея тепловой смерти Вселенной. Раз все виды энергии деградируют, превращаясь в тепло, то когда-нибудь закончат свое существование звезды, отдав свою энергию в окружающее пространство, и вся Вселенная придет в самое простое состояние хаоса - термодинамического равновесия с температурой лишь на несколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие шары планет и звезд. Не будет источников энергии - не будет жизни, не будет ничего.
План семинарского занятия (2 часа)
1. Симметрия. Виды симметрии в физике.
2. Принципы симметрии и законы сохранения физических величин.
3. Принцип соответствия.
4. Принцип дополнительности и соотношение неопределенностей.
5. Принцип суперпозиции.
6. Три начала термодинамики.