Происхождение и эволюция галактик и звезд

При построении рассмотренной нами выше космологической модели Вселенной принималось, что вещество в ней распределено однородно и изотропно. Имеется в виду среднее по Метагалактике распределение вещества. В действительности в настоящее время значительная масса вещества сконденсирована в форме галактик и скоплений галактик. Возникают следующие вопросы: какие причины приводят к фрагментации первоначально однородно распределенного, расширяющегося вещества Вселенной и почему наиболее существенные свойства галактик — их формы, размеры и массы — именно таковы?

Впервые вопрос о фрагментации однородно распределенного вещества рассмотрел английский ученый Дж. Джинс в 1902 г. Он исходил из того, что если в однородной среде возникает по каким-либо причинам сгущение — неоднородность с размерами г, то она может либо продолжать уплотняться (расти) под действием собственного тяготения, либо рассасываться (затухать) под действием газового давления. Направление протекания процесса зависит от того, будет ли размер сгущения больше или меньше критического. Критический размер легко оценить, если

приравнять газовое давление в сгустке Происхождение и эволюция галактик и звезд - student2.ru , давлению

силы тяжести Происхождение и эволюция галактик и звезд - student2.ru

Из этого условия следует, что размер сгущения определяется следующим соотношением:

Происхождение и эволюция галактик и звезд - student2.ru

Сгущения определенной массы могут формироваться лишь при определенных соотношениях между величинами Т и р. Если, например, плотность догалактического вещества р Происхождение и эволюция галактик и звезд - student2.ru 10-24 г/см3 (это средняя плотность Галактики), то сгущение массой m Происхождение и эволюция галактик и звезд - student2.ru 1011 mc может образоваться лишь в случае, если температура Т Происхождение и эволюция галактик и звезд - student2.ru 106 К. При меньшей температуре образуются сгущения меньшей массы.

Наряду с массой важнейшей характеристикой галактики является мера ее осевого вращения — вращательный момент на единицу массы. Мера вращения у эллиптических галактик гораздо меньше, чем у спиральных галактик. Очень медленное вращение эллиптических галактик не может объяснить их наблюдаемую эллиптичность, т. е. сплюснутость, подобно, например, тому, как действием центробежной силы можно объяснить сплюснутость земного шара у полюсов. По-видимому, сплюснутость эллиптических галактик объясняется самим характером звездных движений в таких галактиках. В противоположность этому влияние центробежной силы у сравнительно быстро вращающихся рукавов спиральных галактик весьма существенно. Есть среди части ученых мнение, что различия между эллиптическими и спиральными галактиками не являются эволюционным эффектом. Другими словами, галактики рождаются либо как спиральные, либо как эллиптические, и в процессе эволюции тип галактики сохраняется. Структура галактики определяется начальными условиями ее образования, например характером вращения того сгустка газа, из которого она образовалась.




В настоящее время имеются уже довольно хорошо разработанные модели превращения огромного облака газа, сжимающегося в результате действия закона всемирного тяготения сперва в протогалактику, а потом в галактику. В самом начале следует представить себе огромный газовый шар, сжимающийся по закону свободного падения к центру. Первоначальная температура этого газа могла быть достаточно высокой, быстро уменьшалась, причем из-за гравитационной неустойчивости образовывались больших размеров сгущения, эволюционировавшие в облака. Благодаря беспорядочным движениям, эти облака сталкивались, что вело к их дальнейшему уплотнению. На этом довольно раннем этапе из облаков стали образовываться звезды "первого поколения", состоящие в основном из водорода и гелия. Наиболее массивные из них успевали проэволюционировать задолго до того, как прекратилось сжатие протогалактик. Взрываясь как сверхновые, они обогащали межзвездную среду металлами. По этой причине звезды следующих поколений имели уже другой химический состав. Это привело, например, к тому, что звезды вблизи центра эллиптических галактик более богаты тяжелыми элементами, чем находящиеся на периферии, что как раз и наблюдается.

В спиральных протогалактиках звездообразование шло медленнее. Поэтому в них смог образоваться газовый диск довольно значительной массы. Этому способствовало также довольно быстрое вращение спиральных протогалактик, препятствующее оттоку всего газа в область ядра и превращению его там в звезды. Другими словами, вращение протогалактик уменьшает скорость звездообразования.

Таким образом, разные типы галактик происходят от прото-облаков с разными плотностями и разным разбросом скоростей внутренних движений. В частности, эллиптические галактики образовались из более плотных облаков газа, находящегося в состоянии довольно быстрого беспорядочного движения. В "бедных" разряженных скоплениях наблюдаются преимущественно спиральные галактики. Возраст галактик практически равен возрасту Вселенной.

Звезды могут образовываться в результате гравитационного сжатия неоднородностей в межзвездной среде. Межзвездная среда распределена очень неоднородно, она имеет клочковатую структуру. В некоторой области среды выполняется критерий Джинса и эти комплексы являются гравитационно неустойчивыми, они должны сжиматься. По мере сжатия критерий гравитационной неустойчивости Джинса начинает выполняться для неоднородностей внутри облака с меньшими массами, вплоть до солнечной. Массивное газопылевое облако начинает дробиться на менее массивные части, которые, сжимаясь, дают начало звездам.

Для того чтобы образовавшаяся неоднородность массой, равной массе звезды, — протозвезда — могла сжиматься дальше, необходимо, чтобы по мере сжатия из нее отводилось тепло, выделившееся при сжатии. Таким механизмом отвода тепла является инфракрасное излучение пыли и молекул межзвездного газа. Значит, протозвезды являются мощными источниками инфракрасного излучения. По мере того как протозвезда сжимается, плотность ее растет, растет ее непрозрачность к инфракрасному излучению.

Дальнейшее, более медленное сжатие происходит до тех пор, пока температура внутри звезды не повысится настолько, что становятся возможными термоядерные реакции синтеза гелия из водорода. Расчеты показывают, что сжатие протосолнца от радиуса R = 10Ro до R = 1R0 продолжалось около 20 млн лет. Более массивные протозвезды эволюционируют быстрее, менее массивные — медленнее.

Стабильное по излучению и свойствам состояние звезды продолжается до тех пор, пока в ее недрах не исчерпается ядерное горючее — водород. Ясно, что массивные звезды благодаря своей высокой светимости исчерпают свой водород быстрее, чем менее массивные.

По мере исчерпания водорода в центре звезды коэффициент непрозрачности вещества непрерывно уменьшается. Это приводит к непрерывной перестройке звезды, сопровождающейся сжатием ее ядра и ростом протяженности оболочки. Ядерные реакции синтеза гелия из водорода идут в узком слое, непосредственно окружающем ядро. По мере выгорания водорода в

слоевом источнике масса гелиевого ядра постепенно увеличивается. Это приводит к увеличению силы тяжести, дальнейшему сжатию ядра и увеличению его температуры. При этом растет светимость звезды. Энергия не успевает переноситься наружу излучением, наступает конвенция. Сжатие ядра и повышение температуры происходит до тех пор, пока в нем не начнутся термоядерные реакции синтеза более тяжелых химических элементов. Например, при температуре в сотни миллионов градусов происходит синтез ядер атома углерода при слиянии трех ядер атома гелия, а затем при еще более высоких температурах образуются кислород, неон и т. д. При этом выделяется большое количество энергии, способное остановить сжатие ядра. Реакции синтеза идут с выделением энергии вплоть до образования ядер атомов железа. Образование более тяжелых химических элементов требует затраты энергии и приводит к охлаждению звезды. После выгорания водорода в ядре звезда становится красным гигантом или сверхгигантом в зависимости от массы звезды.

Если масса звезды меньше 1,2 массы Солнца, то после исчерпания водорода в ядре оно начнет сжиматься. Сжатие ядра останавливается давлением вырожденного электронного газа, т. е. ядро звезды представляет собой звезду — белый карлик. В то же время оболочка звезды увеличивается в размерах до 10-100 радиусов Солнца, так что сама становится красным гигантом. Довольно быстро оболочка вообще отделяется от ядра и на месте звезды остается ядро — звезда белый карлик и расширяющаяся оболочка, т. е. феномен планетарной туманности. Затем за несколько тысяч лет расширяющаяся оболочка рассеивается в межзвездной среде, а белый карлик еще в течение сотен миллионов лет высвечивает тепловую энергию, запасенную им при сжатии.

Такая судьба ожидает и наше Солнце через 5 млрд лет. Структура его определяется давлением вырожденного электронного газа, а перенос энергии из центра определяется теплопроводностью.

Если же первоначальная масса ядра звезды превосходит 1,2 раза массы Солнца, но была меньше 2,4 массы Солнца, то в ней после исчерпания ядерного горючего происходит катастрофа в

виде вспышки сверхновой. Сила тяжести настолько велика, что даже давление вырожденного электронного газа не в состоянии ей противодействовать. Поэтому по мере сжатия ядра здесь происходит распад ядер тяжелых элементов на более простые и превращение всех частиц в нейтроны. Протоны, которые входят в состав атомных ядер, образовавшихся на предыдущей стадии эволюции звезды, в конце концов превращаются в нейтроны. При больших плотностях (109 кг/м3) из-за принципа запрета Паули в нейтронном газе будет также действовать специфическая сила отталкивания, и равновесие поддерживается давлением нейтронного газа. Подтверждением наличия нейтронных звезд во Вселенной являются пульсары (пульсирующие звезды, обнаруженные в 1967 г.).

Если масса ядра звезды превосходит 2,5-3 масс Солнца, то ее неограниченное сжатие под давлением силы гравитации уже ничем не остановить. Она превращается в черную дыру. Скорость, необходимая для удаления с этой звезды, становится больше скорости света. Основываясь на законе всемирного тяготения и конечности скорости распространения света, возможность существования черных дыр предсказал еще в XVIII в. Лаплас. Звезда массой, равной солнечной, при обращении в черную дыру имела бы радиус 3 км. Теоретические оценки показывают, что число черных дыр в Галактике может достигать сотен миллионов. Черную дыру можно обнаружить, если она является компонентом двойной звезды — она может быть мощным источником рентгеновского излучения. Примером такого источника можно назвать мощный рентгеновский источник Лебедь Х-1.

Название "черная дыра" связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновское излучение и т. д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн. В случае тесной двойной звезды гравитационное воздействие черной дыры притягивает газ с поверхности обычной звезды, образуя диск вокруг нее. Температура газа в этом вращающемся диске может достичь 107 К. При температуре в миллионы Кельвинов газ будет излучать в рентгеновском диа-

пазоне. И по нему можно определить наличие в данном месте черной дыры.

С эволюцией звезд тесно связан вопрос о происхождении химических элементов. Если водород и гелий являются элементами, которые остались от ранних стадий эволюции расширяющейся Вселенной, то более тяжелые химические элементы могли образоваться только в недрах звезд при термоядерных реакциях. Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов.

В конце эволюции в зависимости от массы звезда либо взрывается, либо сбрасывает более спокойно вещество, уже обогащенное тяжелыми элементами. При этом образуются остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Например, Солнце — звезда второго поколения, образовавшаяся из вещества, уже однажды побывавшего в недрах звезд и обогащенного тяжелыми элементами. Вот почему о возрасте звезд можно судить по их химическому составу, определенному методом спектрального анализа.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во-первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во-вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

13.2. Происхождение планет Солнечной системы

Все у нас, Луцилий, чужое, одно лишь время нагие. Только время ускользающее и текучее дала нам во владенье природа, но и его кто хочет, тот и отнимет.

Сенека

Для изучения вопросов происхождения небесных тел важным является определение их возраста. Определение возраста

земной коры основано на исследовании содержания в ней радиоактивных элементов (урана, тория и др.), а также радиоактивных изотопов таких элементов, как калий, аргон и др. Как известно, радиоактивные элементы непрерывно распадаются, причем процесс распада совершенно не зависит от внешних воздействий. При радиоактивном распаде образуются изотопы соседних элементов периодической системы Менделеева. Эти изотопы сами нередко оказываются радиоактивными, а значит, и они распадаются. Распад заканчивается, когда атомы радиоактивных элементов превращаются в нерадиоактивные атомы химических элементов и их изотопы. Например, распад урана (238U) завершается образованием нерадиоактивного изотопа свинца (206РЬ). Промежуток времени (Т), по истечении которого остается половина начального количества радиоактивных атомов, характеризуется скоростью распада и называется периодом полураспада. Для определения возраста земной коры используются медленно распадающиеся изотопы, например урана (Т Происхождение и эволюция галактик и звезд - student2.ru 4,5-109 лет), радиоактивный изотоп калия 40К (Т Происхождение и эволюция галактик и звезд - student2.ru 1,3109 лет) и др. Чтобы определить возраст земной коры, сравнивают содержание радиоактивных элементов и продуктов их распада в многочисленных пробах, взятых для анализа. Такое сравнение показывает, что возраст земной коры около 4,5 млрд лет. Примерно таков же возраст Земли как оформившейся планеты. К 3,5-4,5 млрд лет близок возраст лунных пород и метеоритов. Солнце, конечно, не может быть моложе Земли и Луны. Скорее всего возраст Солнца (желтой звезды) — 5 млрд лет. Сопоставление возраста Солнечной системы с возрастом Метагалактики (будем считать его равным 15 млрд лет) показывает, что Солнце нельзя отнести к звездам "первого поколения". Скорее всего в состав его и планет вошел газ, уже побывавший в недрах более старых звезд. На ранних стадиях расширения Метагалактики, как вы уже знаете, вообще не было тяжелых химических элементов, которые впоследствии стали центрами конденсации твердых частиц, необходимых для формирования планет.

Кроме этого факта гипотеза, объясняющая происхождение, развитие Солнечной системы, должна дать ответы и объяснить

следующие основные закономерности, наблюдаемые в строении, движении, свойствах Солнечной системы:

1. Орбиты всех планет (кроме орбиты Плутона) лежат практически в одной плоскости, почти совпадающей с плоскостью солнечного экватора.

2. Все планеты обращаются вокруг Солнца по почти круговым орбитам в одном и том же направлении, совпадающем с направлением вращения Солнца вокруг своей оси.

3. Направление осевого вращения планет (за исключением Венеры и Урана) совпадает с направлением их обращения вокруг Солнца.

4. Средние расстояния планет от Солнца (за исключением Нептуна и Плутона) подчиняются определенному закону (правилу Тициуса—Воде).

5. Суммарная масса планет в 750 раз меньше массы Солнца (почти 99,9% массы Солнечной системы приходится на долю Солнца), однако на их долю приходится 98% суммарного момента количества движения всей Солнечной системы.

6. Планеты делятся на две группы, резко различающиеся между собой по строению, физическим свойствам, — планеты земной группы и планеты-гиганты.

7. Подавляющее число спутников обращается вокруг планет практически по круговым орбитам, лежащим в большинстве случаев в плоскости экватора планеты, причем (за несколькими исключениями) направление этого движения совпадает с направлением осевого вращения планет.

История науки знает множество гипотез о происхождении Солнечной системы. Причем эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение первых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел.

Немецкий философ И. Кант в своей книге "Всеобщая естественная история и теория неба" (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находившейся в состоянии первозданного хаоса. Под действием двух сил—притяжения и отталкивания—материя со временем переходила в более разнообразные формы. Элементы, имеющие большую плотность, по закону всемирного тяготения притягивали менее плотные, вследствие этого образовались отдельные сгустки материи. Под действием же сил отталкивания (которые якобы особенно эффективны, когда вещество находится в распыленном состоянии) прямолинейное движение частиц к центру тяготения заменялось кругообразным. Вследствие столкновения частиц вокруг отдельных сгустков и формировались планетные системы. Все это представлялось Канту настолько очевидным, что он не удержался от замечания, ставшего как бы символом естествознания: "Дайте мне материю, и я построю из нее мир, т. е. дайте мне материю, и я покажу всем, как из нее должен образоваться мир..."

Совершенно другая гипотеза о происхождении планет была изложена в книге П. Лапласа "Изложение системы мира" (1769 г.). По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную, медленно вращающуюся туманность. Под действием силы тяжести протосолнце сжималось, поэтому оно принимало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой инерции, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них и формировались планеты. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путем образовались и спутники планет. Гипотеза Лапласа, бывшая весьма популярной на протяжении почти ста лет, оказывалась не в состоянии объяснить перераспределение момента количества движения между Солнцем и планетами. Расчет показывает, что если бы все планеты упали на Солнце (т. е. вернули ему потерянный им момент количества движения), то скорость его вращения была бы недостаточной для того, чтобы могло проис-

ходить отделение колец. Кроме того, для этой и других гипотез, по которым планеты и их спутники образуются из горячего газа, камнем преткновения является еще следующее: из горячего газа планета сформироваться не может, так как этот газ очень быстро расширяется и рассеивается в пространстве.

В 20-е годы XX в. английский астроном Д. Джинс разработал приливную теорию происхождения Солнечной системы. По этой теории в результате случайного сближения Солнца с какой-то звездой на Солнце образовалась гигантская приливная волна, приведшая к тому, что из двух противоположных точек его поверхности началось мощное извержение струй газа. Эти газовые массы очень быстро сгущались в облака, в которых росли планетезимали — небольшие твердые тела, из которых в дальнейшем сформировались планеты.

В 30-х годах было высказано предположение (Г. Рессел), что в прошлом Солнце было двойной звездой. Один из компонентов был разорван встречной звездой и образовал облако, из которого позже сформировались планеты. В дальнейшем эту гипотезу видоизменили (Ф. Хойл в 1944 г.). Было выдвинуто предположение, что один из компонентов вспыхнул как сверхновая, сбросил газовую оболочку. Звезды разошлись, а из газовой оболочки образовалась планетная система.

Большую роль в разработке установившихся в настоящее время взглядов на происхождение планетной системы сыграли работы нашего соотечественника О. Ю. Шмидта. В основе теории О. Ю. Шмидта лежат два предположения: планеты сформировались из холодного газопылевого облака; это облако было захвачено Солнцем при его обращении вокруг центра Галактики. На основе этих предположений Шмидту удалось объяснить некоторые закономерности в строении Солнечной системы — распределение планет по расстояниям от Солнца, вращение и др. Гипотез было много, но если каждая из них хорошо объясняла часть исследований, то другую часть не объясняла (рис. 13.1).

При разработке космогонической гипотезы прежде всего необходимо решить вопрос: откуда взялось вещество, из кото-

л

Происхождение и эволюция галактик и звезд - student2.ru

Рис. 13.1. Образование планет по гипотезе О. Ю. Шмидта

рого со временем сформировались планеты? Здесь возможны три варианта:

1. Планеты образуются из того же газопылевого облака, что
и Солнце (И. Кант).

2. Облако, из которого образовались планеты, захва
чено Солнцем при его обращении вокруг центра Галактики
(О. Ю. Шмидт).

3. Это облако отделилось от Солнца в процессе его эволюции
(П. Лаплас, Д. Джинс и др.).

Общую схему развития нашей планетной системы можно описать следующим образом.

Около 5 млрд лет назад в протяженном газопылевом облаке, пронизанном магнитными силовыми линиями, образовалось центральное сгущение — протосолнце, которое медленно сжималось. Другая часть облака, массой в 10 раз меньшей, медленно вращалась вокруг него. В результате столкновения атомов, молекул и пылинок туманность постепенно сплющивалась и разогревалась. Так вокруг Солнца образовался протяженный газопылевой диск. Его магнитное поле, "наматываясь" на про-

тосолнце, способствовало передаче момента внешним слоям диска.

По одному из вариантов эволюции протопланетного облака, рассмотренному В. С. Сафроновым, вначале в этом облаке произошло деление компонентов — газа и пыли. Оседание пыли к центральной плоскости произошло примерно за 1000 оборотов облака вокруг Солнца. Одновременно протекал процесс роста пылинок до к 1 см.

Под действием светового давления легкие химические элементы водород и гелий "выметались" из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения "работает" даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы. Таким образом, вблизи экваториальной плоскости Солнца образовался слой пыли повышенной плотности. Как только плотность этого слоя достигла критического значения, в нем возникла гравитационная неустойчивость. Вначале образовались кольца, которые быстро распались на отдельные сгущения. Их исходные размеры и массы на расстоянии в одну астрономическую единицу от Солнца достигали 40 км и 5 • 1013 кг, а на расстоянии Юпитера — соответственно 105 км и 1019кг. За счет собственной тяжести происходило дальнейшее сжатие сгустков, их уплотнение, рост больших и разрушение малых. Превращение сгущенной пыли в отдельные твердые тела продолжалось всего 10 000 лет на расстоянии в 1 а.е. и около 1 млн лет на расстоянии Юпитера от Солнца.

Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твердых тел. Расчеты показывают, что эффективность взаимных столкновений пропорциональна четвертой степени радиуса сгущения (плане-тезимали). Это привело к быстрому росту размеров наибольших из них. В результате столкновений их орбиты приближались

к круговым, а сами они превращались в зародыши планет. Со временем выживали лишь те из них, орбиты которых с учетом их взаимного притяжения оказались устойчивыми.

Подобно планетам земной группы, формировались зародыши планет-гигантов — Юпитера и Сатурна, хотя время их конденсации было в несколько раз большим. В данном случае, как только масса протопланеты достигала величины двух-трех масс Земли, начиналась интенсивная аккреция газа, входящего в протопланетное облако.

Чтобы согласовать расчеты с наблюдениями, приходится ввести допущение, что в процессе роста планет-гигантов значительное количество твердого вещества было выброшено из Солнечной системы. Это привело к образованию на ее периферии облака комет, которое частично сохранилось и до наших дней.

Направление и скорость вращения планеты вокруг своей оси устанавливаются статистически как суммарный результат объединения многих планетезималей и выпадения на зародыш планеты тел из "спутникового роя", окружающего каждую планету на раннем этапе ее формирования. Как оказалось, по наклону оси вращения планеты к плоскости эклиптики можно оценить массу самых больших тел, выпадавших на планету. В частности, для нашей планеты эти массы не превышали 0,001 массы Земли. То, что ось вращения Урана наклонена к плоскости ее орбиты под углом 98°, связано с влиянием Юпитера и Сатурна. Как только массы этих планет возросли до двух-трех масс Земли, они своим притяжением вносили возмущения в движение других планетезималей, придавая им большие скорости, достаточные для того, чтобы вылетать за пределы Солнечной системы. Случайное столкновение этих тел с протоураном и привело к упомянутой аномалии в его вращении вокруг своей оси. Массы наибольших тел, выпадавших на Уран, достигали величины 0,07 массы этой планеты.

Зародыши планет-гигантов не только препятствовали формированию планеты в зоне астероидов между Марсом и Юпитером, но привели и к значительному уменьшению конечной массы планеты Уран.

Несмотря на сходство образования и состава исходного материала планет земной группы, в настоящий момент заметно различие в достигнутом уровне развития планет. На других планетах отсутствуют не только признаки жизни, но даже такие химические соединения, которые в ходе дальнейшей эволюции могли бы привести к появлению примитивных органических форм. Земля же обладает богатым, в высшей степени развитым органическим миром.

Сравнение физических характеристик планет земной группы позволило выявить ряд общих закономерностей их происхождения и последующей эволюции. В раннюю историю своего существования все планеты, как Земля, пережили три общие для них фазы развития:

1) фазу аккреции; 2) фазу расплавления внешней среды (а возможно, и недр) и 3) лунную фазу (стадию первичной коры). Совокупность этих фаз составляет раннюю историю планет. В раннюю историю Земля в своем развитии не отличалась от других планет. Во все последующее время до современной эпохи включительно, т. е. на протяжении 3,5-4,0 млрд лет, все планеты, за исключением Земли, развивались более или менее однотипно, хотя степень активности как внутренних, так и внешних планетных процессов была разной. Чем большую массу имеет планета, тем большее количество радиогенной и гравитационной энергии образуется в ее недрах. Соответственно и более активно протекают у планеты эндогенные процессы — вулканизм и тектонические движения. У небесных тел (Луны и Меркурия) вулканизм прекратился уже более 3 млрд лет назад. На Марсе он до недавнего времени был весьма активным. На Венере (по косвенным данным) и на Земле интенсивный вулканизм продолжался на протяжении всей их истории, вплоть до настоящего времени.

К числу общих закономерностей развития планет земной группы относятся следующие:

1. Все планеты произошли из единого протопланетного газопылевого облака (туманности) в результате его конденсации и аккреции образовавшихся сгустков материала и рассеянного

вещества. Более крупные скопления росли быстрее за счет присоединения к себе меньших агрегатов и рассеянного материала и превращались в зародыши планет — планетезимали.

2. В конце стадии аккреции, т. е. приблизительно 4,5 млрд лет назад, под влиянием быстрого накопления тепловой энергии за счет трансформированной метеоритной кинетической энергии внешняя оболочка планет претерпела полное расплавление.

3. В результате последующего остывания внешних слоев литосферы образовалась кора. В ее состав вошли более легкие компоненты основной магмы. Более тяжелые, благодаря гравитационной дифференциации, сконцентрировались ниже коры, образовав мантию планеты. На этот же период приходится расплавление и центральной области планеты за счет накопления радиогенной и гравитационной энергии. Таким образом, на раннем этапе существования планет произошла дифференциация их вещества на ядро, мантию и кору.

4. Индивидуально происходило развитие внешней области планет. Формирование природной обстановки происходило и происходит под влиянием климатического фактора, но степень его полноты весьма неодинаковая на разных планетах, а отсюда и неодинаков эффект его действия. Важнейшим условием здесь является наличие или отсутствие у планеты атмосферы и гидросферы. Причем определяющим следует признать не сам факт их наличия или отсутствия, а определенное сочетание их параметров. Для атмосферы это будут химический состав, плотность, температурный режим, циркуляция и т. д.; для гидросферы — общая масса воды и ее фазовое состояние — твердое, жидкое или газообразное. Из них наибольшей активностью обладает вода в жидкой фазе.

5. Вследствие полного отсутствия воды на безатмосферных Луне и Меркурии или наличия ее в малом количестве и не в жидкой фазе на Марсе и Венере на этих планетах экзогенные процессы не могут подавить морфологический эффект метеоритной бомбардировки, поэтому кратерный тип рельефа безраздельно господствует на Луне, Меркурии, Венере и преобладает на Марсе. Марс в прошлом имел более теплый и влажный климат,

жидкую воду и относительно высокую активность экзогенных процессов, действие которых выразилось в существенной переработке первичного рельефа ударных кратеров.

6. С циркуляцией воды во внешней оболочке Земли связано функционирование на нашей планете мощного комплекса экзогенных процессов, оказывающих огромное влияние на другие компоненты — литосферу, органический мир, вовлечение их в глобальные круговороты.

Наши рекомендации