Первично-активный транспорт
Действие пассивного транспорта через мембрану, в ходе которого ионы перемещаются по их электрохимическому градиенту, должно быть сбалансировано их активным транспортом против соответствующих градиентов. В противном случае, ионные градиенты исчезли бы полностью, и концентрации ионов по обе стороны мембраны пришли бы в равновесие. Это действительно происходит, когда активный транспорт через мембрану блокируют охлаждением или путём использования некоторых ядов.
Существует несколько систем активного транспорта ионов в плазматической мембране (ионные насосы):
1) Натрий-калиевый насос.
2) Кальциевый насос.
3) Водородный насос.
Активный транспорт - перенос ионов против их электрохимических градиентов с использованием энергии метаболизма:
Натрий-калиевый насос существует в плазматических мембранах всех животных и растительных клеток. Он выкачивает ионы натрия из клеток и загнетает в клетки ионы калия. В результате концентрация калия в клетках существенно превышает концентрацию ионов натрия.
Натрий-калиевый насос - один из интегральных белков мембраны. Он обладает энзимными свойствами и способен гидролизовать аденозинтрифосфорную кислоту (АТФ), являющуюся основным источником и хранилищем энергии метаболизма в клетке. Благодаря этому указанный интегральный белок называется натрий-калийиевой АТФазой. Молекула ATФ распадается на молекулу аденозиндифосфорной кислоты (АДФ) и неорганический фосфат.
Таким образом, натрий-калиевый насос выполняет трансмембранный антипорт ионов натрия и калия. Молекула насоса существует в двух основных конформациях, взаимное преобразование которых стимулируется гидролизом ATФ. Эти конформации выполняют функции переносчиков натрия и калия. При расщеплении натрий-калиевой АТФазой молекулы ATФ, неорганический фосфат присоединяется к белку. В этом состоянии натрий-калиевая АТФаза связывает три иона натрия, которые выкачиваются из клетки. Затем молекула неорганического фосфата отсоединяется от насоса-белка, и насос превращается в переносчик калия. В результате два иона калия попадают в клетку. Таким образом, при расщеплении каждой молекулы ATФ, выкачиваются три иона натрия из клетки и два иона калия закачиваются в клетку. Один натрий-калиевый насос может перенести через мембрану 150- 600 ионов натрия в секунду. Следствием его работы является поддержание трансмембранных градиентов натрия и калия.
Через мембраны некоторых клеток животного (например, мышечных) осуществляется первично-активный транспорт ионов кальция из клетки (кальциевый насос), что приводит к наличию трансмембранного градиента указанных ионов.
Водородный ионный насос действует в мембране бактериальных клеток и в митохондриях, а также в клетках желудка, перемещающего водородные ионы из крови в его полость.
Вторично-активный транспорт
Существуют системы транспорта через мембраны, которые переносят вещества из области их низкой концентрации в область высокой концентрации без непосредственного расхода энергии метаболизма клетки (как в случае первично-активного транспорта). Такой вид транспорта называется вторично- активным транспортом.
Вторично-активный транспорт некоторого вещества возможен только тогда, когда он связан с транспортом другого вещества по его концентрационному или электрохимическому градиенту. Это симпортный или антипортный перенос веществ.
При симпорте двух веществ ион и другая молекула (или ион) связываются одновременно с одним переносчиком прежде, чем произойдёт конформационное изменение этого переносчика. Так как ведущее вещество перемещается по градиенту концентрации или электрохимическому градиенту, управляемое вещество вынуждено перемещаться против своего градиента.
Ионы натрия являются обычно ведущими веществами в системах симпорта клеток животного. Высокий электрохимический градиент этих ионов создаётся натрий-калиевым насосом. Управляемыми веществами являются сахара, аминокислоты и некоторые другие ионы. Например, при всасывании питательных веществ в желудочно-кишечном тракте глюкоза и аминокислоты поступают из клеток тонкой кишки в кровь путём симпорта с ионами натрия. После фильтрации первичной мочи в почечных гломерулах, эти вещества возвращаются в кровь той же системой вторично-активного транспорта.
Эндоцитоз и экзоцитоз
Макромолекулы - белки и нуклеиновые кислоты - не могут проникнуть через плазматическую мембрану с помощью механизмов транспорта, рассмотренных выше, из-за своих больших размеров. При трансмембранном транспорте больших молекул сама плазматическая мембрана подвергается согласованным перемещениям, вследствие которых часть жидкой внеклеточной поглощается (эндоцитоз) или часть внутренней среды клетки выделяется (экзоцитоз).
В процессе эндоцитоза плазматическая мембрана окружает часть внешней среды, формируя вокруг неё оболочку, в результате чего образуется везикула, которая поступает внутрь клетки. При пиноцитозе образуются небольшие, заполненные жидкостью везикулы. В процессе фагоцитоза формируются большие везикулы, которые содержат твердый материал, например, клетки бактерий.
При экзоцитозе транспортируемое вещество синтезируется в клетке, связывается мембраной в везикулы и экспортируется из клетки. Таким образом транспортируются из клетки специфические белки, нуклеиновые кислоты, нейромедиаторы и т.п.