Возможности создания биолазера
НА ФРЕЛИХОВКИХ МОДАХ [3]
В данной главе обсуждается и аналитически рассматривается возможность создания перевозбужденного состояния основной (выделен-ной) коллективной Фрелиховской моды за счет когерентного резо-нансного взаимодействия электромагнитного (амплитудно-модулиро-ванного) излучения с Фрелиховским осциллятором. В рамках по-нятий лазерной физики речь идет о создании инверсной заселенности между квантовыми уровнями выделенной колебательной моды и, в итоге, о реализации “in vitro-in vivo” суперфлуоресценции и лазерной генерации с использованием в качестве рабочих тел молекул ДНК, РНК, белков, а также таких надмолекулярных структур, как рибосомы, полирибосомы и хромосомы.
Подчеркнем, что в отличие от Фрелиховского подхода, в котором подразумевается квазинеравновесное состояние (колебательная температура выделенной моды превосходит таковую “тепловой бани” Tvib>Teq>0, т.е. колебания квазиравновесны), в данной работе оценены условия, при которых система рассматриваемых биосубстратов инвертирована (Tvib<0), что прямо связано с созданием инверсной населенности.
Итак, Фрелиховская мода моделируется двухуровневой квантовой системой (уровень 1 основное состояние, 2 верхнее), возбуждаемой резонансным амплитудно-модулированным электрическим полем
E( t)=Eog(t)сoswt , (1)
где Eo амплитуда напряженности поля, g(t) модуляционный фактор, w=w21 (w21 частота перехода 2®1).
Процесс возбуждения колебаний моды описывается уравнением Больцмана для матрицы плотности:
, (2)
где оператор гамильтона в дипольном приближении имеет вид:
где Ho= w21 гамильтониан изолированной двухуровневой системы, оператору соответствует матрица с элементами 11= 12= 21=0, 22=1, оператор прекции индуцированного дипольного момента осциллятора на направление поля, равновесная матрица плотности, феноменологически введенное время релаксации (для диагональных элементов =T1, для недиагональных T2).
Уравнению Больцмана (2) эквивалентна следующая система уравнений для элементов матрицы плотности ( ik; i,k=1,2):
i ( 11+( 111)/T1)= E(t)( 21 12 - 12 21),
i ( 12+ 12/T2)= - 21 12-E(t) 12( 22 - 11) , (3)
i ( 21+ 21/T2)= + 21 21+E(t) 21( 22 - 11)
с учетом уровня нормировки
22+ 11=1 (4)
Нетрудно показать, что система (3) может сводиться к уравнению (при выкладках вторыми гармониками ~exp(2i 21t) пренебрегалось): 22+ 22+
22 (0) = 22 = 0, (5)
где =Eo 21/ частота Раби. Заметим, что амплитудная модуляция поля приводит не только к модуляциям частоы Раби, но и к модуляции “коэффициента трения” осциллятора.
Ниже рассматривается случай T1=T2=T. Можно показать, что уравнение (5) допускает точное решение для произвольной функции g(t):
(6)
G(t)=
(t’)dt’ (7)
Рассмотрим случай периодической модуляции амплитуды напряженности поля
g(t)=cos t . (8)
Если период модуляции T =2 / короче времени релаксации (T <<T), то для времени T <<t<<T усреднение (6) за период T дает:
< 22>=1/2 (9)
и, соответственно, (4):
< 11>=1/2 ,
где функция Бесселя нулевого порядка, так что для разности населенностей уровней 2 и 1 имеем
= . (10)
Из (10) четко следует, что в диапазонах параметра , где k=1,2,.. и корни функции Бесселя, вероятность заселения уровня 2 превосходит таковую для уровня 1. Другими словами, мы имеем перевозбужденное инвертированное состояние осциллятора, что является необходимым условием для создания условий лазерной генерации ( ). Ситуация здесь аналогична процессу раскачивания маятника с пульсирующей точкой подвеса (маятник Капицы, классическое рассмотрение[29]).
Для больших времен, t>>T, функция G(t), входящая в соотношение (6), имеет вид:
G(t)=P(t)cos + Q(t)sin ,
P(t)=
Q(t)=2 , (11)
где J функция Бесселя соответствующего порядка.
Из (11) следует важный вывод: когерентный механизм взаимодействия Фрелиховских мод с резонансным амплитудно-модулированным полем обусловливает незатухающие колебания диагональных элементов матрицы плотности для времен t, превосходящих времена релаксации системы, причем частоты пульсаций кратны частоте амплитудной модуляции .
Усредняя (11) за период T , получаем
<G(t)>= , (12)
где x= функции Бесселя мнимого порядка (i мнимая единица). В частном случае, когда период модуляции T короче времени релаксации T, x <<1,
< >=1/2 , < >=1/2 , (13)
так что
< > < >= - . (14)
В данном случае эффект инверсии не реализуется.
Рассмотрим случай, когда закон модуляции задается соотношением
g(t)=1+ . (15)
По аналогии с предыдущим для функции G(t), входящей в соотношение (6), можно получить (T .
G(t)= . (16)
Из (16) видно, что спектр пульсаций диагональных матричных элементов и включает, кроме частоты Раби, “стоксовые” и “антистоксовые” комбинационные частоты . Допустим для определенных n выполнено условие , т.е.
(17)
тогда, как следует из (16), постоянная составляющая для вероятностей и сдвигается. Динамическому состоянию равновесия при этом соответствуют величины:
< >=1/2 , < >=1/2 , (18)
так что
Эффект инверсии ( реализуется при условии
. (19)
Если параметр глубины модуляции лежит в диапазонах, где значения функции Бесселя отрицательны, то реализуется режим перевозбуждения системы (информационных биомакромолекул и надмолекулярных структур).
Таким образом, высказана идея принципиальной возможности создания биолазеров на Фрелиховских модах in vitro, а также инициации таких процессов в живой клетке в дополнение (или коррекции) к известным естественным лазероподобным процессам в биосистемах. Показано, что в определенных условиях в случае когерентного (резо-нансного) взаимодействия амплитудно-модулированного внешнего электромагнитного излучения с Фрелиховской модой система информационных биоструктур может существовать в перевозбужденном состоянии, что является необходимой предпосылкой для создания знаконесущих биолазеров.
Необходимо отметить,что описанный выше механизм формирования биолазеров на основе молекул ДНК позволяет подойти к попытке реализации еще одной фундаментальной гипотезы Фрелиха о возможности перекачки энергии kТ внутриклеточной жидкости в энергию электрических колебаний в молекуле ДНК[30]. В соответствии с этой гипотезой стохастические тепловые колебания kТ раствора могут резонансно взаимодействовать (в определенном интервале частот) с колебательными модами молекулы ДНК, и благодаря тому, что как молекула ДНК, так и молекулы белков представляют собой распределенные нелинейные колебательные структуры, часть энергии может группироваться в низкочастотных модах этих молекул. Иными словами, молекула ДНК в растворе может частично преобразовывать энергию колебаний kТ в энергию собственных мод. Заметим, что даже в рамках предложенного квазили-нейного подхода проблема перекачки тепловой энергии раствора может быть сведена к механизму затухания квантового осциллятора, который был предложен А.Пиппардом[31]. C учетом этого в уравнение Шредингера вводится комплексный потенциал, интерпретирующий передачу энергии осциллятора большому числу мод расширяющегося сферического резонатора. Если размеры этого резонатора конечны, как в случае с живой клеткой, то возникнет резонансный обмен энергии между модами kТ раствора и электрическими модами молекулы ДНК. Эти рассуждения также говорят в пользу того, что и в водно-жидкокристаллическом электролите клеточно-тканевого пространства биосистемы генетические молекулы могут функционировать как биолазеры.
Надо указать на существенное обстоятельство относительно принципиальной возможности реализации возбуждения Фрелиховских мод “in vitro” по биохимическому пути, а именно за счет энергии гидролиза АТФ и других нуклеозид-трифосфатов, а также за счет других макроэргических соединений живой клетки. В данном случае мы будем искусственно повторять то, что эволюционно и (или) иным путем дано биосистемам как основная информационная и, может быть, энергетическая фигура. Эта часть наших исследований ставит определенные нравственные и этические проблемы применения биолазеров.
АНТЕННАЯ МОДЕЛЬ
ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФОРМАЛИЗМ [16]
Как уже неоднократно отмечалось, функционирование ряда биологических макромолекул (в частности, ферментов) и других биологических соединений во многом определяется процессами, происходящими в активных центрах, окруженных биополимерными цепочками, имеющими знаковую топологию. Исходя из такого представления о структуре информационных биомакромолекул, естественно предположить, что их взаимодействие с физическими полями внешних по отношению к биосистеме и внутренних (организменных) излучений приводит к возбуждению дипольно-активных колебаний мономеров, формирующих указанную цепочку, а те, в свою очередь, индуцируют колебания в активном центре. Иными словами, такая система будет работать как своеобразная антенна. Эти возбужденные колебания способны привести к переходу биомакромолекулы в другое конформационное (топологическое, знаковое) состояние.
Подобная концепция в принципиальном плане адекватна целому ряду функционально высокозначимых биомакромолекул, например, хлорофилла, гемоглобина, миоглобина и т. д. Эти макромолекулы объединяются двумя структурными качествами: 1) в их геометрическом центре расположен ион (в случае хлорофилла - ион магния, в случае гемоглобина - ион железа); 2) около иона симметрично расположены 4 пиррольных кольца (псевдоплоская структура).
Другими типами биополимеров, соответствующих антенной модели, могут быть cравнительно простые циклы типа валиномицина (переносчик ионов калия) и сложные надмолекулярные структуры хромосом, ДНК которых содержит высокоорганизованные ассоциаты таких металлов, как магний, кальций, никель, кобальт, медь, железо, цинк и др. При этом роль их неясна и сводится исследователями, в основном, к нейтрализации ОН-групп остатков фосфорной кислоты полинуклеотида. Представляется, что функции металлов в ДНК и РНК существенно более широкие и реализуются по линии знакового и (или) энергетического взаимодействия с эндогенными и экзогенными по отношению к биосистеме физическими полями. То же относится и к белкам, не содержащим порфириновый центр, но специфическим образом связывающим металлы. Например, таковыми можно считать сайт-специфические белки с доменами типа “цинковых пальцев”, участвующими в регуляции генов, подчас очень далеко отстоящих от этих управляющих белков. Атомы металлов ДНК и белков могут резонансно взаимодействовать по электромагнитным каналам в рамках понятий антенной модели. Еще раз обозначим понятие антенной модели.
Внешняя энергия (в частности, связанная с резонансным взаимодействием крайне высокочастотных электромагнитных излучений с белками) поступает на периферию, т. е. на ансамбль субъединиц (не обязательно идентичных по структуре). В результате активной “беседы”, предопределенной биохимическими связями, между периферийными акцепторами (получившими закодированную энергию) и центром-ассоциатом (в данном случае ионом металла гемсодержащих белков), последний получает энергию (информацию), что и вызывает биологическое действие. Степень реакционной способности биомакромолекул существенно зависит от уровня возбуждения центральных субъединиц. Рассмотрим в деталях потенциальные механизмы волновых взаимодействий физических полей и активных центров информационных биомакромолекул в рамках предлагаемой нами антенной модели.
В качестве простейшей модели для иллюстрации антенного эффекта рассмотрим двумерную замкнутую (циклическую) цепочку мономеров. В центре цикла расположен активный центр, связанный с мономерами цепочки диполь-дипольным взаимодействием.
Обозначим координатные смещения мономеров через , а смещение активного центра через . Для потенциальной функции имеем:
(1)
Первые два члена в (1) соответствуют колебаниям мономеров (второй член учитывает ангармонизм); последние два члена отвечают за связи между мономерами, Остальные члены отвечают за связи между мономерами и активным центром.
Уравнения движения запишем в виде:
(2)
где внешняя монохроматическая сила, действующая только на мономеры, коэффициент затухания, введенный феноменологически (простоты ради принят одинаковым и для мономеров, и для активного центра).
С учетом (1), система уравнений (2) приобретает вид:
(3)
(4)
Введем общую координату для ансамбля мономеров
. (5)
тогда система уравнений (4) в линейном приближении приобретает вид:
(6)
где:
число мономеров.
С учетом (5) имеем (7.1)
(7.2)
Из (7.2) следует (8)
Подстановка (8) в (7.1) дает
.
(9)
Соответствующее характеристическое уравнение имеет вид (после подстановки в однородное уравнение):
(10)
Обозначив имеем
так что
(11)
В дальнейшем предполагается выполнение неравенств:
(12)
Первое условие соответствует случаю слабой связи между мономерами и активным центром, второе - малому затуханию мономерных осцилляторов.
Для собственных значений имеем
, (13)
где введены коллективные частоты:
(14)
Нас интересуют вынужденные колебания (внешняя сила ):
. (15)
Подстановка (15) в (9) и приравнивание соответствующих коэффициентов при и дают систему алгебраических уравнений:
где:
В результате получаем
где
После несложных, но громоздких преобразований для вынужденных колебаний активного центра получаем:
. (16)
Из (16) видно, что наибольшая амплитуда вынужденных колебаний активного центра достигается в условиях коллективного резонанса: либо , либо .
В любом из этих случаев для амплитуды вынужденных колебаний имеем:
(17)
Из (17) следует, что наибольший эффект резонансной раскачки активного центра достигается при большем числе периферийных субъединиц “антенны”, при более высоком значении коэффициента связи активного центра с мономерами, при наименьшем коэффициенте затухания и при наименьшем дисбалансе коллективных мод.
Нетрудно определить и “хореографию” (динамику вынужденных колебаний) отдельных мономерных единиц. В соответствии с (6) уравнение для k -го мономера запишем в виде:
(18)
Вводя коллективные координаты
и применяя метод линейной алгебры, получаем для вынужденных колебаний мономеров:
,
(19)
где:
‑ определяется из (16).
Таким образом, в рамках антенной модели наибольший эффект воздействия внешнего монохроматического поля ре-ализуется в условиях коллективного резонанса:
.
Повторяя рассуждения раздела 2, можно сделать также следующие выводы:
1) При реализации амплитудной модуляции внешнего сигнала имеют место дополнительные возможности резонансного воздействия на биомакромолекулы на частотах:
2) Учет нелинейности при квадратичной связи для монохроматического сигнала привносит дополнительный резонанс на второй гармонике
3) Учет нелинейности при амплитудной модуляции определяет еще ряд резонансных возможностей:
Таким образом, при действии резонансного электромагнитного поля на биомакромолекулы с активным центром, содержащим атомы металлов, существенную роль играют коллективные волновые эффекты. В этом случае свойства самого излучения предопределяют широкие возможности регуляторного влияния на динамику биомакромолекул в целом и, следовательно, на биопроцессы, в которых они принимают участие, тем самым прямо или косвенно реализуя управляющие и (или) дезорганизующие сигналы.
КОНВЕРСИЯ ЭПИГЕНОСИГНАЛОВ
В ЭЛЕКТРОМАГНИТНЫХ
СОЛИТОННЫХ СТРУКТУРАХ,
ИХ ТРАНСПОЗИЦИЯ