Концепции естественного отбора. Естественный отбор как движущая сила эволюции

Естественный отбор — основной эволюционный процесс, в результате действия которого в популяции увеличивается число особей, обладающих максимальной приспособленностью (наиболее благоприятными признаками), в то время, как количество особей с неблагоприятными признаками уменьшается.

Естественный отбор – это направленный фактор эволюционного процесса, движущая сила эволюции.

Направление естественного отбора называется вектором отбора.

Сущест-ет множество подходов к определению понятия «естеств отбор».

С точки зрения классической синтетической теории эволюции:

Естественный отбор – это совокупность биологических процессов, обеспечивающих дифференцированное воспроизведение генетической информации в популяциях.

Результаты естественного отбора:

1. Сохранение генетической структуры популяции

2. Изменение генетической структуры популяции

3. Появление новых вариантов ранее существовавших признаков

4. Появление принципиально новых признаков

5. Образование новых видов

6. Прогрессивный характер биологической эволюции.

В процессе естественного отбора закрепляются мутации, увеличивающие приспособленность организмов. Естественный отбор часто называют «самоочевидным» механизмом, поскольку он следует из таких простых фактов, как:

1. Организмы производят потомков больше, чем может выжить;

2. В популяции этих организмов существует наследств. Изменч-сть;

3. Организмы, имеющие разные генетические черты, имеют различную выживаемость и способность размножаться.

Такие условия создают конкуренцию между организмами в выживании и размножении и являются минимально необходимыми условиями для эволюции посредством естественного отбора. Таким образом, организмы с наследственными чертами, которые дают им конкурентное преимущество, имеют большую вероятность передать их своим потомкам, чем организмы с наследственными чертами, не имеющими подобного преимущества.

Центральное понятие концепции естественного отбора- приспособлен-ть организмов. Приспособленность определяется как способность организма к выживанию и размножению, которая определяет размер его генетического вклада в следующее поколение. Однако главным в определении приспособленности является не общее число потомков, а число потомков с данным генотипом (относительная приспособленность). Например, если потомки успешного и быстро размножающегося организма слабые и плохо размножаются, то генетический вклад и, соответственно, приспособленность этого организма будут низкими.

28. Механизмы межвидовой изоляции
Концепция биологического вида предполагает наличие межвидовой репродуктивной изоляции – то есть такой изоляции, которая препятствует скрещиванию особей, принадлежащих к разным видам. Репродуктивная изоляция обеспечивает не только сосуществование множества близких видов, но и их эволюционную независимость.

Различают первичную и вторичную изоляцию. Первичная изоляция возникает без участия естественного отбора; эта форма изоляции случайна и непредсказуема. Вторичная изоляция возникает под воздействием комплекса элементарных эволюционных факторов; эта форма изоляции возникает закономерно и поддается прогнозированию.

Простейшей формой межвидовой изоляции является пространственная, или географическая изоляция. Виды не могут скрещиваться, поскольку популяции разных видов пространственно изолированы друг от друга. По степени пространственной изоляции различают аллопатрические, смежно-симпатрические и биотически-симпатрические популяции.

Биотически-симпатрические популяции могут скрещиваться между собой с образованием межвидовых гибридов. Но тогда за счет постоянного образования гибридов и их возвратных скрещиваний с родительскими формами чистые виды должны рано или поздно вообще исчезнуть. Однако в действительности этого не происходит, что указывает на существование разнообразных механизмов, эффективно предотвращающих межвидовую гибридизацию в природных условиях, которые сформировались при участии специфических форм естественного отбора, известных под названием «процессы Уоллеса». (Именно поэтому наиболее удачны эколого-географические скрещивания между видами, не контактирующими в естественных условиях.)

Обычно различают три группы изолирующих механизмов: прекопуляционные, презиготические и постзиготические. В то же время презиготические и постзиготические механизмы изоляции часто объединяют под общим названием «посткопуляционные механизмы».

Различают след. механизмы межвидовой репродуктивной изоляции: 1.Прекопуляционные механизмы – предотвращают копуляцию (спаривание у животных или опыление у растений). При этом не происходит элиминации ни отцовских, ни материнских гамет (и соответствующих генов). 2.Презиготические механизмы – предотвращают оплодотворение. При этом происходит элиминация отцовских гамет (генов), но сохраняются материнские гаметы (гены). Презиготическая изоляция может быть как первичной, так и вторичной. 3. Постзиготические механизмы – предотвращают передачу генов родительских видов в последующие поколения через гибридов.

29. Биологическое разнообразие. Уровни внутривидового биоразнообразия
Биологическое разнообразие — существование многочисленных видов растений и животных — непременное условие для выживания человека. На защиту и сохранение разнообразных видов животных и растений и их среды обитания направлена Конвенция Организации Объединенных Наций о биологическом разнообразии (1992 год), к которой присоединились 190 стран. Конвенция обязывает государства сохранять биоразнообразие, обеспечивать его устойчивое развитие и предусматривает добросовестное и справедливое распределение выгод от использования генетических ресурсов. ЕеКартахенский протокол

, который вступил в силу в 2003 году, направленный на обеспечение безопасного использования генетически модифицированных организмов, подписали в настоящее время 143 страны. Под биологическим разнообразием понимается все «множество различных живых организмов, изменчивость среди них и экологических комплексов, частью которых они являются, что включает разнообразие внутри видов, между видами и экосистемами»; при этом следует различать глобальное и локальное разнообразие. Биологическое разнообразие представляет собой один из важнейших биологических ресурсов (биологическим ресурсом считается «генетический материал, организмы или их части, либо экосистемы, используемые или потенциально полезные для человечества, включая природное равновесие внутри экосистем и между ними»).

Различают следующие типы биологического разнообразия: альфа, бета, гамма и генетическое разнообразие. Под α -разнообразием понимают видовое разнообразие, под β-разнообразием – разнообразие сообществ на определенной территории; γ-разнообразие – это интегральный показатель, включающий α- и β-разнообразие. Однако в основе перечисленных типов биоразнообразия лежит генетическое (внутривидовое, внутрипопуляционное) разнообразие.

Наличие двух и более аллелей (а, соответственно, и генотипов) в популяции называется генетическим полиморфизмом. Условно принято, что частота наиболее редкого аллеля при полиморфизме должна быть не менее 1% (0,01). Существование генетического полиморфизма – обязательное условие сохранения биоразнообразия.

Представления о необходимости сохранения генетического полиморфизма в природных популяциях были сформулированы еще в 1920-ых гг. нашими выдающимися соотечественниками. Николай Иванович Вавилов создал учение об исходном материале, обосновал необходимость создания хранилищ мирового генофонда культурных растений. Александр Сергеевич Серебровский создал само учение о генофонде. В понятие «генофонд» вкладывалось то генетическое разнообразие вида, которое сложилось в ходе его эволюции или селекции и обеспечило его адаптивные и продукционные возможности. Сергей Сергеевич Четвериков заложил основы учения и методов оценки генетической гетерогенности популяций диких видов растений и животных.

30. Проблемы сохранения полиморфизма видов на различных этапах видообразования
Случайная фиксация первично редких селективно-нейтральных аллелей возможна в результате дрейфа генов лишь в очень малых популяциях. Но в таких популяциях случайным образом фиксируются и селективно-нейтральные аллели других генов, что должно существенно снижать уровень генетического полиморфизма. Установлено, что ледники оказали заметное влияние на структуру популяций некоторых видов рыб, например, тихоокеанских лососей. в большинстве случаев популяции современных видов характеризуются высоким уровнем генетического полиморфизма. реальные механизмы формированияпосткопуляционной изоляции значительно сложнее, чем рассмотренные выше.

По уровню внутривидового разнообразия можно выделить две крайние группы видов: с высоким и низким уровнем внутривидового полиморфизма. Первая группа – это политипические эврибионтные виды с широким ареалом и сложной внутривидовой структурой, с высоким уровнем внутрипопуляционной и межпопуляционной изменчивости. Вторая группа – это эндемики с низким уровнем изменчивости. Очевидно, что первая группа видов обладает высоким эволюционным потенциалом, т.е. может дать начало множеству новых видов (а в дальнейшем и таксонам более высокого ранга). Вторая группа характеризуется низким эволюционным потенциалом; вероятность того, что она даст начало новым видам (а тем более таксонам более высокого ранга), значительно меньше.

31. Биологический прогресс и его критерии. Биологическая стабилизация. Биологический регресс и его причины.
Биологический прогресс характеризует отдельные группы организмов на определенных этапах развития органического мира.

Критерии биологического прогресса:

1. Увеличение числа особей рассматриваемой группы.

2. Расширение ареала.

3. Интенсивное формо- и видообразование.

В итоге наблюдается выход в новую адаптивную зону с последующей адаптивной радиацией, то есть распространение в различных условиях обитания. В настоящее время, в состоянии биологического прогресса, находятся покрытосеменные растения, насекомые, птицы и млекопитающие.

Существует три основных способа достижения биологического прогресса: арогенез, аллогенез и катагенез, которые закономерно сменяют друг друга.

Арогенез- процесс повышения общего уровня организации.

Критерии арогенеза (морфофизиологического прогресса):

а) системные – совершенствование систем гомеостаза и гомеореза;

б) энергетические – повышение к.п.д. организма,в частном случае – повышение уровня обмена веществ (птицы, млекопитающие);

в) информационные – возрастание объема информации: генетической (увеличение объема ДНК в клетке) и эпигенетической (память, научение).

Следствием прогресса явл общебиологический прогресс, связанный с выходом в новую адаптивную зону.

Ароморфозы – это крупные преадаптации, которые заранее обеспечивают организмам возможность обитания в новых условиях. Вследствие ароморфозов начинается широкая адаптивная радиация. Адаптивная радиация – это разветвление предкового ствола группы организмов на отдельные ветви в ходе приспособительной эволюции.

Аллогенез – это процесс появления частных адаптаций в определенных условиях обитания, не сопровождающийся повышением общего уровня организации. В результате аллогенеза формируются алломорфозы, теломорфозы и гиперморфозы.

Алломорфозы, – это анатомо-морфологические адаптации, обеспечивающие приспособленность к определенным условиям обитания.

Теломорфозы связаны с переходом от общей среды к частной, более ограниченной.

Гиперморфозы – это гипертрофированные признаки. Пример гигантизм.

Наши рекомендации