Ультразвук и его применения в медицине

Ультразвуком (УЗ) называют механические колебания и волны с частотами более 20 кГц.

Верхним пределом ультразвуковых частот условно можно счи­тать 109—1010 Гц. Этот предел определяется межмолекулярными расстояниями и поэтому зависит от агрегатного состояния веще­ства, в котором распространяется ультразвуковая волна.

Для генерирования УЗ используются устройства, называемые УЗ-излучателями. Наибольшее распространение получили элек­тромеханические излучатели, основанные на явлении обратного пьезоэлектрического эффекта (см. § 12.7). Обратный пьезоэффект заключается в механической деформации тел под действием элект­рического поля. Основной частью такого излучателя (рис. 6.13, а) является пластина или стержень из вещества с хорошо выражен­ными пьезоэлектрическими свойствами (кварц, сегнетова соль, ке­рамический материал на основе титаната бария и др.). На поверх­ность пластины в виде проводящих слоев нанесены электроды 2. Если к электродам приложить переменное электрическое напряже­ние от генератора 3, то пластина благодаря обратному пьезоэффекту начнет вибрировать, излучая механическую волну соответствую­щей частоты.

Наибольший эффект излучения механической волны возникает при выполнении условия резонанса (см. § 5.5). Так, для пластин

толщиной 1 мм резонанс возникает для кварца на частоте 2,87 МГц, сегнетовой соли — 1,5 МГц и титаната бария — 2,75 МГц.

Ультразвук и его применения в медицине - student2.ru Приемник УЗ можно создать на осно­ве пьезоэлектрического эффекта (пря­мой пьезоэффект). В этом случае под действием механической волны (УЗ-волны) возникает деформация кристалла (рис. 6.13, б), которая приводит при пьезоэффекте к генерации переменно­го электрического поля; соответствую­щее электрическое напряжение может быть измерено.

Применение УЗ в медицине связано с особенностями его распространения и характерными свойствами. Рассмот­рим этот вопрос.

По физической природе УЗ, как и звук, является механической (упругой) волной. Однако длина волны УЗ существенно меньше длины звуко­вой волны. Так, например, в воде длины волн равны 1,4 м (1 кГц, звук), 1,4 мм (1 МГц, УЗ) и 1,4 мкм (1 ГГц, УЗ). Дифракция волн (см. § 19.5) существенно зависит от соотношения длины волны и размеров тел, на которых волна дифрагирует. Непрозрачное (для звука) тело размером 1 м не будет препятствием для звуковой волны с длиной 1,4 м, но станет преградой для УЗ-волны с длиной 1,4 мм: возникнет «УЗ-тень». Это позволяет в некоторых случаях не учиты­вать дифракцию УЗ-волн, рассматривая при преломлении и отраже­нии эти волны как лучи (аналогично преломлению и отражению световых лучей).

Отражение УЗ на границе двух сред зависит от соотношения их волновых сопротивлений (см. § 6.4). Так, УЗ хорошо отражается на границах мышца — надкостница — кость, на поверхности по­лых органов и т. д. Поэтому можно определить расположение и размер неоднородных включений, полостей, внутренних органов и т. п. (УЗ-локация). При УЗ-локации используют как непрерыв­ное, так и импульсное излучения. В первом случае исследуется стоячая волна, возникающая при интерференции падающей и отраженной волн от границы раздела. Во втором случае наблюдают отраженный импульс и измеряют время распространения ультра­звука до исследуемого объекта и обратно. Зная скорость распрост­ранения ультразвука, определяют глубину залегания объекта.

Волновое сопротивление биологических сред в 3000 раз больше волнового сопротивления воздуха. Поэтому если УЗ-излучатель приложить к телу человека, то УЗ не проникнет внутрь, а будет от­ражаться из-за наличия тонкого слоя воздуха между излучателем и биологическим объектом (см. § 6.4). Чтобы исключить воздуш­ный слой, поверхность УЗ-излучателя покрывают слоем масла.

Скорость распространения ультразвуковых волн и их поглоще­ние существенно зависят от состояния среды; на этом основано использование ультразвука для изучения молекулярных свойств ве­щества. Исследования такого рода являются предметом молеку­лярной акустики.

Как видно из (5.56), интенсивность волны пропорциональна квадрату круговой частоты, поэтому можно получить УЗ значи­тельной интенсивности даже при сравнительно небольшой ампли­туде колебаний. Ускорение частиц, колеблющихся в УЗ-волне, также может быть большим [см. (5.14)], что говорит о наличии су­щественных сил, действующих на частицы в биологических тка­нях при облучении УЗ.

Сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости — кавитаций.

Кавитации существуют недолго и быстро захлопываются, при этой в небольших объемах выделяется значительная энергия, происходит разогревание вещества, а также ионизация и диссо­циация молекул.

Физические процессы, обусловленные воздействием УЗ, вызы­вают в биологических объектах следующие основные эффекты:

— — — микровибрации на клеточном и субклеточном уровне;

— — — разрушение биомакромолекул;

— — — перестройку и повреждение биологических мембран, изме­нение проницаемости мембран (см. гл. 11);

— — — тепловое действие;

— — — разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в ос­новном разделить на два направления: методы диагностики и исследования и методы воздействия.

К первому направлению относятся локационные методы с ис­пользованием главным образом импульсного излучения. Это эхоэнцефалография — определение опухолей и отека головного моз­га (на рис. 6.14 показан эхоэнцефалограф «Эхо-12»); ультразву­ковая кардиография — измерение размеров сердца в динамике; в офтальмологии — ультразвуковая локация для определения размеров глазных сред. С помощью ультразвукового эффекта До­плера изучают характер движения сердечных клапанов и измеря­ют скорость кровотока. С диагностической целью по скорости ультразвука находят плотность сросшейся или поврежденной кости.

Ко второму направлению относится ультразвуковая физио­терапия. На рис. 6.15 показан используемый для этих целей ап­парат УТП-ЗМ. Воздействие ультразвуком на пациента произво­дят с помощью специальной излучательной головки аппарата.

 
  Ультразвук и его применения в медицине - student2.ru

Обычно для терапевтических целей применяют ультразвук часто­той 800 кГц, средняя его интенсивность около 1 Вт/см2 и меньше.

Первичными механизмами ультразвуковой терапии являются механическое и тепловое действия на ткань.

При операциях ультразвук применяют как «ультразвуковой скальпель», способный рассекать и мягкие, и костные ткани.

Способность ультразвука дробить тела, помещенные в жид­кость, и создавать эмульсии используется в фармацевтической промышленности при изготовлении лекарств. При лечении таких заболеваний, как туберкулез, бронхиальная астма, катар верхних дыхательных путей, применяют аэрозоли различных лекарствен­ных веществ, полученные с помощью ультразвука.

В настоящее время разработан новый метод «сваривания» по­врежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Губительное воздействие ультразвука на микроорганизмы ис­пользуется для стерилизации.

Интересно применение ультразвука для слепых. Благодаря ультразвуковой локации с помощью портативного прибора «Ори­ентир» можно обнаруживать предметы и определять их характер на расстоянии до 10 м.

Перечисленные примеры не исчерпывают всех медико-биоло­гических применений ультразвука, перспектива расширения этих приложений поистине огромна. Так, можно ожидать, напри­мер, появления принципиально новых методов диагностики с внедрением в медицину ультразвуковой голографии (см. § 19.8).

Инфразвук

Инфразвуком называют механические (упругие) волны с частотами, меньшими тех, которые воспринимает ухо че­ловека (< 20 Гц).

Источниками инфразвука могут быть как естественные объек­ты (море, землетрясение, грозовые разряды и др.), так и искусст­венные (взрывы, автомашины, станки и др.).

Инфразвук часто сопровождается слышимым шумом, напри­мер в автомашине, поэтому возникают трудности при измерении и исследовании собственно инфразвуковых колебаний.

Для инфразвука характерно слабое поглощение разными сре­дами, поэтому он распространяется на значительное расстояние. Это позволяет по распространению инфразвука в земной коре обнаруживать взрыв на большом удалении его от источника, по из­меренным инфразвуковым волнам прогнозировать цунами и т. д. Так как длина волны инфразвука больше, чем у слышимых зву­ков, то инфразвуковые волны сильнее дифрагируют и проникают в помещения, обходя преграды.

Инфразвук оказывает неблагоприятное влияние на функци­ональное состояние ряда систем организма: вызывает усталость, головную боль, сонливость, раздражение и др. Предполагается, что первичный механизм действия инфразвука на организм имеет резонансную природу. Резонанс наступает при близких значени­ях частоты вынуждающей силы и частоты собственных колеба­ний (см. § 5.5). Частоты собственных колебаний тела человека в положении лежа (3—4 Гц), стоя (5—12 Гц), частоты собственных колебаний грудной клетки (5—8 Гц), брюшной полости (3—4 Гц) и т. д. соответствуют частоте инфразвуков.

Снижение уровня интенсивности инфразвуков в жилых, про­изводственных и транспортных помещениях — одна из задач ги­гиены.

Вибрации

В технике механические колебания различных конструкций и машин получили название вибраций.

Они оказывают воздействие и на человека, который соприкаса­ется с вибрирующими объектами. Это воздействие может быть как вредным и приводящим в определенных условиях к вибраци­онной болезни, так и полезным, лечебным (вибротерапия и вибро­массаж).

Основные физические характеристики вибраций совпадают с характеристиками механических колебаний тел, это:

— — — частота колебаний или гармонический спектр ангармониче­ского колебания;

— — — амплитуды смещения, скорости и ускорения;

— — — энергия и средняя мощность колебаний.

Кроме того, для понимания действия вибраций на биологиче­ский объект важно представлять себе распространение и затуха­ние колебаний в теле. При исследовании этого вопроса использу­ют модели, состоящие из инерционных масс, упругих и вязких элементов (см. § 8.3).

Вибрации являются источником слышимых звуков, ультра­звуков и инфразвуков.

Г Л А В А 7 Течение и свойства жидкостей

К жидкостям относят вещества, которые по своим свойствам занимают промежуточное положение между газами и твер­дыми телами. Жидкие среды составляют наибольшую часть организма, их перемещение обеспечивает обмен веществ и снабжение клеток кислородом, поэтому механические свой­ства и течение жидкостей представляют особый интерес для медиков и биологов.

Материал, изложенный в главе, имеет отношение к гидроди­намике — разделу физики, в котором изучают вопросы дви­жения несжимаемых жидкостей и взаимодействие их при этом с окружающими твердыми телами, и к реологии — уче­нию о деформациях и текучести вещества.

Наши рекомендации