Совместное действие экологических факторов на организм

Экологические факторы обычно действуют не по одному, а комплексно. Действие одного какого-либо фактора зависит от силы воздействия других. Сочетание разных факторов оказывает заметное влияние на оптимальные условия жизни организма (см. рис. 2). Действие одного фактора не заменяет действие другого. Однако при комплексном воздействии среды часто можно наблюдать «эффект замещения», который проявляется в сходстве результатов воздействия разных факторов. Так, свет не может быть заменен избытком тепла или обилием углекислого газа, но, воздействуя изменениями температуры, можно приостановить, например фотосинтез растений.

В комплексном влиянии среды воздействие различных факторов для организмов неравноценно. Их можно подразделить на главные, сопутствующие и второстепенные. Ведущие факторы различны для разных организмов, если даже они живут в одном месте. В роли ведущего фактора на разных этапах жизни организма могут выступать то одни, то другие элементы среды. Например, в жизни многих культурных растений, таких, как злаки, в период прорастания ведущим фактором является температура, в период колошения и цветения — почвенная влага, в период созревания — количество питательных веществ и влажность воздуха. Роль ведущего фактора в разное время года может меняться.

Ведущий фактор может быть неодинаков у одних и тех же видов, живущих в разных физико-географических условиях.

Понятие о ведущих факторах нельзя смешивать с понятием о лимитирующих факторах. Фактор, уровень которого в качественном или количественном отношении (недостаток или избыток) оказывается близким к пределам выносливости данного организма,называется лимитирующим. Действие лимитирующего фактора будет проявляться и в том случае, когда другие факторы среды благоприятны или даже оптимальны. Лимитирующими могут выступать как ведущие, так и второстепенные экологические факторы.

Понятие лимитирующих факторов было введено в 1840 г. химиком 10. Либихом. Изучая влияние на рост растений содержания различных химических элементов в почве, он сформулировал принцип: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени». Этот принцип известен под названием закона минимума Либиха.

Закон минимума Либиха относится ко всем влияющим на организм абиотическим и биотическим факторам. Это может быть, например, конкуренция со стороны другого вида, присутствие хищника и паразита. Сформулированный закон действует как в отношении растений, так и животных.

Лимитирующим фактором может быть не только недостаток, на что указывал Либих, но и избыток таких факторов, как, например, тепло, свет и вода. Как отмечалось ранее, организмы характеризуются экологическим минимумом и максимумом. Диапазон между этими двумя величинами принято называть пределами устойчивости, или толерантности.

В общем виде всю сложность влияния экологических факторов на организм отражает закон толерантности В. Шелфорда: отсутствие или невозможность процветания определяется недостатком или, наоборот, избытком любого из ряда факторов, уровень которых может оказаться близким к пределам, переносимым данным организмом (1913 г.). Эти два предела называют пределами толерантности.

По «экологии толерантности» были проведены многочисленные исследования, благодаря которым стали известны пределы существования многих растений и животных. Таким примером является влияние загрязняющего атмосферный воздух вещества на организм человека (рис. 3).

Совместное действие экологических факторов на организм - student2.ru

Рис. 3. Влияние загрязняющего атмосферный воздух вещества на организм человека. Макс — максимальная жизненная активность; Доп — допустимая жизненная активность; Опт — оптимальная (не влияющая на жизненную активность) концентрация вредного вещества; ПДК — предельно допустимая концентрация вещества, существенно не изменяющая жизненную активность; Лет — летальная концентрация

Концентрация влияющего фактора (вредного вещества) на рис. 5.2 обозначена символом С. При значениях концентрации С = Слет человек погибнет, но необратимые изменения в его организме произойдут при значительно меньших значениях С = Спдк. Следовательно, диапазон толерантности ограничивается именно значением Спдк= Слим. Отсюда, Спдк необходимо определить экспериментально для каждого загрязняющего или любого вредного химического соединения и не допускать превышения его Сплк в конкретной среде обитания (жизненной среде).

В охране окружающей среды важны именноверхние пределы устойчивости организма к вредным веществам.

Таким образом, фактическая концентрация загрязняющего вещества Сфакт не должна превышать Спдкфакт ≤ Спдк = Слим).

Ценность концепции лимитирующих факторов (Слим) состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций. Если для организма характерен широкий диапазон толерантности к фактору, отличающемуся относительным постоянством, и он присутствует в среде в умеренных количествах, то такой фактор вряд ли является лимитирующим. Наоборот, если известно, что тот или иной организм обладает узким диапазоном толерантности к какому-то изменчивому фактору, то именно этот фактор и заслуживает внимательного изучения, так как он может быть лимитирующим.

299. Закон оптимума.

Любой экологический фактор имеет определенные пределы положительного влияния на живые организмы.

Графически закон оптимума выражается симметричной куполообразной кривой (кривая толерантности), показывающей, как изменяется жизнедеятельность вида при постепенном увеличении воздействия фактора.

Совместное действие экологических факторов на организм - student2.ru

Пределами выносливости (экологической валентностью) называют минимальное и максимальное значение фактора, при котором возможна жизнедеятельность. Границы, за пределами которых наступает гибель организмов, являются нижними и верхними границами выносливости вида. Их называют критическими точками.

Пример:

Животные и растения плохо переносят сильную жару и сильные морозы; оптимальными являются средние температуры. Точно так же и засуха, и постоянные проливные дожди одинаково неблагоприятны для урожая.

Положение вершины кривой указывает оптимальные (наилучшие) условия по этому фактору для особей данного вида.


Для особей некоторых видов характерны кривые с очень острыми пиками.

Это означает, что диапазон условий, при которых особи данного вида могут нормально существовать, очень узок.

Пологие кривые соответствуют широкому диапазону толерантности.

Организмы с широкими границами устойчивости, конечно, имеют шансы на более широкое распространение.

Однако широкие границы по одному фактору вовсе не означают широких границ по всем факторам.

300. Абиотические факторы, приспособленность организмов к ним.

Важнейшие абиотические факторы и адаптация к ним живых организмов

Дайте характеристику света как абиотического фактора. Приведите классификацию экологических классов растений по отношению к свету.

Охарактеризуйте температуру как абиотический фактор. Объясните экологический смысл правил Бергмана и Аллена (приведите примеры).

В чем состоит различие между пойкилотермными и гомойотермными организмами?

Как формулируется биоклиматический закон А. Хопкинса? Дайте ему экологическое объяснение.

Охарактеризуйте влажность как абиотический фактор. Приведите примеры влаго- и сухолюбивых растений и животных, а также предпочитающих умеренную влажность.

Среди основных абиотических факторов рассмотрим свет, температуру и влажность.

Свет.
В свое время французский астроном Камиль Фламмарион (1842-1925) написал: "Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца".

Действительно, только под влиянием света осуществляется важнейший в биосфере процесс фотосинтеза, который в общем виде может быть представлен следующим образом:

Совместное действие экологических факторов на организм - student2.ru

где А - донор электронов.

У зеленых растений (высших растений и водорослей) донором электронов является вода (кислород), поэтому в результате фотосинтеза образуется кислород:

Совместное действие экологических факторов на организм - student2.ru

У бактерий роль донора электронов могут выполнять, например, сероводород (сера), органические вещества. Так, у зеленых и пурпурных серобактерий идет следующий процесс:

Совместное действие экологических факторов на организм - student2.ru

Совместное действие экологических факторов на организм - student2.ru Фотосинтез в зеленых растениях

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на клетку может быть смертельно для организма, с другой - свет служит первичным источником энергии, без которого невозможна жизнь.

Видимый свет оказывает на организмы смешанное действие: красные лучи - тепловое воздействие; синие и фиолетовые лучи - изменяют скорость и направление биохимических реакций. В целом свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждое местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой), количеством и качеством света.

Интенсивность (сила) света измеряется энергией, приходящейся на единицу площади в единицу времени: Дж/м2Чс; Дж/см2Чс. На этот фактор сильно влияют особенности рельефа. Самым интенсивным является прямой свет, однако более полно растениями используется рассеянный свет.

Количество света определяется суммарной радиацией. От полюсов к экватору количество света увеличивается. Для определения светового режима необходимо учитывать и количество отраженного света, так называемое альбедо. Альбедо (от лат. albus - белый) - отражающая способность поверхностей различных тел - выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности. Например, альбедо чистого снега - 85%, загрязненного - 40-50%, черноземной почвы - 5-14%, светлого песка - 35-45%, полога леса - 10-18%, зеленых листьев клена - 10%, осенних пожелтевших листьев - 28%.

По отношению к свету как экологическому фактору различают следующие группы растений: гелиофиты (от греч. helios - солнце, phyton - растение), сциофиты (от греч. skia - тень) и теневыносливые растения (факультативные гелиофиты).

Световые растения (гелиофиты) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко. Процесс фотосинтеза начинает преобладать над процессом дыхания только при высокой освещенности (пшеница, сосна, лиственница). Цветки таких светолюбивых растений, как подсолнечник, козлобородник, череда, поворачиваются за солнцем.

Теневые растения (сциофиты) - не выносят сильного освещения и живут под пологом леса в постоянной тени (это в основном лесные травы, папоротники, мхи, кислица). На вырубках при сильном освещении они проявляют явные признаки угнетения и часто погибают.

Теневыносливые растения (факультативные гелиофиты) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, лесные травы и кустарники).

Совместное действие экологических факторов на организм - student2.ru Совместное действие экологических факторов на организм - student2.ru
Влияние света на состояние сосны (по Г. Р. Эйтингену)

Теневыносливые древесные породы и теневые травянистые растения отличаются мозаичным расположением листьев. У эвкалиптов листья обращены к свету ребром. У деревьев световые и теневые листья (располагаются соответственно по поверхности и внутри кроны) - хорошо освещаемые и затененные - имеют анатомические различия. Световые листья толще и грубее, иногда они блестящие, что способствует отражению света. Теневые листья обычно матовые, неопушенные, тонкие, с очень нежной кутикулой или вовсе без нее (кутикула - наружная пленка, покрывающая эпидермис).

В лесу теневыносливые деревья образуют густо сомкнутые насаждения. Под их пологом растут еще более теневыносливые деревья и кустарники, а ниже - теневые кустарнички и травы. На рисунке показаны две сосны: одна из них росла на открытом пространстве при хорошем освещении (1), а другая в густом лесу (2).

Наибольшее значение свет как средство ориентации имеет в жизни животных. Уже у простейших появляются светочувствительные органеллы. Так, эвглена зеленая с помощью светочувствительного "глазка" реагирует на степень освещенности среды. Начиная с кишечнополостных, практически у всех животных развиваются светочувствительные органы - глаза, имеющие то или иное строение.

Среди животных различают дневные, ночные и сумеречные виды. Имеются также виды, живущие в постоянной темноте и не выносящие яркого солнечного света (почвенные животные, обитатели пещер и больших глубин, внутренние паразиты животных и растений).

Биолюминесценцией называется способность живых организмов светиться. Происходит это в результате окисления сложных органических соединений при участии катализаторов обычно в ответ на раздражения, поступающие из внешней среды. Световые сигналы, испускаемые рыбами, головоногими моллюсками и другими гидробионтами, а также некоторыми организмами наземно-воздушной среды (например, жуками семейства светляков), служат для привлечения особей противоположного пола, приманивания добычи или отпугивания хищников, ориентации в стае и др.

Важным экологическим фактором является температура.

Температура.
Одним из наиболее важных факторов, определяющих существование, развитие и распространение организмов по земному шару, является температура. Важно не только абсолютное количество тепла, но и его временнoе распределение, т. е. тепловой режим.
Растения не обладают собственной температурой тела: их анатомо-морфологические и физиологические механизмы термо-
регуляции направлены на защиту организма от вредного воздействия неблагоприятных температур.

В зоне высоких температур при пониженной влажности (тропические и субтропические пустыни) исторически сформировался своеобразный морфологический тип растений с незначительной листовой поверхностью или с полным отсутствием листьев. У многих пустынных растений образуется беловатое опушение, способствующее отражению солнечных лучей и предохраняющее их от перегрева (акация песчаная, лох узколистный).

К физиологическим приспособлениям растений, сглаживающим вредное влияние высоких температур, могут быть отнесены: интенсивность испарения - транспирация (от лат. trans - через, spiro - дышу, выдыхаю), накопление в клетках солей, изменяющих температуру свертывания плазмы, свойство хлорофилла препятствовать проникновению солнечных лучей.

В мире животных наблюдаются определенные морфологические адаптации, направленные на защиту организмов от неблагоприятного действия температур. Свидетельством этого может служить известное правило Бергмана (1847 г.), согласно которому в пределах вида или достаточно однородной группы близких видов теплокровные организмы с более крупными размерами тела распространены в более холодных областях.

Попытаемся объяснить это правило с позиций термодинамики: потеря тепла пропорциональна поверхности тела организма, а не его массе. Чем крупнее животное и компактнее его тело, тем легче поддерживать постоянную температуру (меньше удельный расход энергии), и наоборот, чем мельче животное, тем больше его относительная поверхность и теплопотери и выше удельный уровень его основного обмена, т. е. количества энергии, расходуемого организмом животного (или человека) при полном мышечном покое при такой температуре окружающей среды, при которой терморегуляция наиболее выражена.

Совместное действие экологических факторов на организм - student2.ru Иллюстрация правила Аллена

У животных с постоянной температурой тела в холодных климатических зонах наблюдается тенденция к уменьшению площади выступающих частей тела (правило Аллена, 1877 г.).

Правило Аллена наглядно проявляется, например, при сравнении размеров ушей экологически близких видов: песца - обитателя тундры; лисицы обыкновенной - типичной для умеренных широт; фенека - обитателя пустынь Африки.
Реакция животных на тепловой режим проявляется и в изменениях пропорций отдельных органов и тела (у горностая из северных районов увеличено сердце, почки, печень и надпочечники по сравнению с такими же зверьками в местностях с более высокой температурой). Из правил Бергмана и Аллена бывают исключения.

Совместное действие экологических факторов на организм - student2.ru Фенек

В зависимости от вида теплообмена различают два экологических типа животных: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos - разнообразный) - животные с неустойчивым уровнем обмена веществ, непостоянной температурой тела и почти полным отсутствием механизмов теплорегуляции (холоднокровные). К ним относятся беспозвоночные, рыбы, пресмыкающиеся, земноводные, т. е. большинство животных, за исключением птиц и млекопитающих.

Температура тела у них изменяется с изменением температуры окружающей среды.

Гомойотермные организмы (от греч. homoios - одинаковый) - животные с более высоким и устойчивым уровнем обмена веществ, в процессе которого осуществляется терморегуляция и обеспечивается относительно постоянная температура тела (теплокровные). К ним относятся птицы и млекопитающие. Температура тела поддерживается на относительно постоянном уровне.

В свою очередь, пойкилотермных животных можно разделить на эвритермных, ведущих активный образ жизни в сравнительно широком температурном диапазоне, и стенотермных, не переносящих значительных колебаний температур.

Механизмы терморегуляции бывают химические и физические.

Химический механизм обусловлен интенсивностью реакций в организме и осуществляется рефлекторным путем:

Совместное действие экологических факторов на организм - student2.ru

Физический механизм терморегуляции обеспечивают теплоизолирующие покровы (мех, перья, жировой слой), деятельность потовых желез, испарение влаги при дыхании, сосудистая регуляция кровообращения.

У пойкилотермных животных интенсивность обмена веществ прямо пропорциональна внешней температуре, у гомойотермных - наоборот, при ее понижении возрастают потери тепла и в ответ активизируются обменные процессы, повышается теплопродукция. Интенсивность метаболизма (обменных процессов) при гомойотермии обратно пропорциональна внешним температурам. Однако такая закономерность прослеживается лишь в определенных пределах. Повышение или понижение температуры относительно порогового значения вызывает перегрев или переохлаждение животного и в итоге его гибель.

Промежуточное положение между пойкилотермными и гомойотермными занимают гетеротермные животные. У них в активном состоянии поддерживается относительно высокая и постоянная температура тела, а в неактивном - температура тела мало отличается от внешней. У этих животных во время спячки или глубокого сна уровень обмена веществ падает, и температура тела лишь незначительно превышает температуру среды. Типичными представителями гетеротермных животных являются суслики, ежи, летучие мыши, медведи, стрижи, утконосы, ехидны, кенгуру.

Рассмотрим пример с насекомыми, представителями пойкилотермных животных (см. рисунок).

Совместное действие экологических факторов на организм - student2.ru

Кривая П. И. Бахметьева

При t° +10°C у насекомых наступает оцепенение, при t° 0°C - переохлаждение. Оно продолжается до момента кристаллизации воды, которая сопровождается скачком температуры. После резкого ее повышения начинаются процессы, ведущие к ухудшению физиологического состояния организма. Физиологическое состояние насекомого в процессе охлаждения зависит от скорости понижения температуры. При медленном охлаждении в клетках образуются кристаллы льда, которые разрывают их оболочку. При очень быстром охлаждении центры кристаллизации не успевают образоваться, и формируется стекловидная структура. В результате цитоплазма не повреждается. Таким образом, глубокое, но очень быстрое охлаждение вызывает временную, обратимую приостановку всех жизненных процессов организма. Подобное состояние, получившее название анабиоз, наблюдается у вирусов, бактерий, беспозвоночных, земноводных, пресмыкающихся, лишайников, мхов. Явление анабиоза впервые было обнаружено и описано А. Левенгуком (1701 г.).

Изучение анабиоза послужило толчком к развитию различных криотехнологий (от греч. kryos - холод, мороз), например, криоконсервации. Этот метод широко используется в биологии, медицине, сельском хозяйстве, в практике длительного хранения консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, различных тканей и органов для трансплантации (от лат. transplantatio - пересаживание), культур, бактерий, вирусов.

Температурный фактор имеет важное значение в распределении живых организмов на Земле и тем самым обусловливает заселенность ими разных природных зон. В 1918 г. А. Хопкинс сформулировал биоклиматический закон. Он установил, что существует закономерная, тесная связь развития фенологических (сезонных) явлений с широтой, долготой и высотой местности над уровнем моря.
Он подсчитал, что по мере продвижения на север, восток и в горы время наступления периодических явлений в жизнедеятельности организмов запаздывает на 4 дня на каждый градус широты, 5 градусов долготы и примерно на 100 м высоты.

Одной из важных закономерностей в распределении современных организмов служит их биполярность - географическое распределение наземной и морской флоры и фауны, при котором один и тот же вид обитает в холодных и умеренных широтах обоих полушарий, но отсутствует в тропическом поясе (беззубые киты, ушастые тюлени и др.).

Не менее важным фактором окружающей среды является влажность.

Влажность.
Вода является важнейшим экологическим фактором в жизни живых организмов и их постоянной составной частью. Все живое Земли включает воду, например, медузы содержат 95-99% воды, кукуруза 70%, зерновые злаки 87%. Даже в амбарном долгоносике, питающемся сухим зерном, содержится 46% воды. В эмбрионе человека 97% воды, после его рождения - 64-77%. У мужчин в возрасте от 18 до 50 лет в организме содержится ~ 61% воды, у женщин 54%.

За свою жизнь человек выпивает до 50-77 м3 воды (за сутки ~ 2,5-3 л). В целом за сутки человек теряет 2-2,5 л воды: 800-

1300 мл с мочой, около 200 мл - с испражнениями и 600 мл с поверхности тела и при дыхании. С потерей 1-1,5 л воды у человека появляется жажда, при расходовании 6-8% влаги от веса тела он впадает в полуобморочное состояние, при дефиците 10-12% наступает смерть.

В различные периоды развития потребность растений в воде неодинакова, особенно у разных видов; меняется она и в зависимости от климата и типа почвы. Например, злакам в период прорастания семян и их созревания нужно меньше влаги, чем во время их интенсивного роста. Для каждой фазы роста и стадии развития любого вида растений можно выделить критический период, когда недостаток воды особенно отрицательно сказывается на его жизнедеятельности. Влажность среды часто является фактором, лимитирующим численность и распространение организмов по земному шару. Например, бук может жить на сравнительно сухой почве, но ему необходима достаточно высокая влажность воздуха. У животных весьма важную роль играют проницаемость покровов и механизмы, регулирующие водный обмен.

Различают абсолютную влажность воздуха, представляющую собой количество газообразной воды (пара) в граммах в 1 м3 воздуха, и относительную. Относительная влажность характеризует степень насыщения воздуха парами воды при определенной температуре и выражается в процентах как отношение абсолютной влажности к максимальной влажности (массе водяных паров в граммах, способных создать полное насыщение в 1 м3 воздуха)

Совместное действие экологических факторов на организм - student2.ru ,

где: r - относительная влажность, %;
m - масса пара, фактически содержащегося в 1 м3 воздуха (абсолютная влажность), г;
mнас - масса 1 м3 насыщенного пара при данной температуре, г.

Важное значение для организмов имеет дефицит насыщения воздуха водяными парами, т. е. разность между максимальной и абсолютной влажностью при данной температуре:

d = mнас - m.

При разных температурах дефицит насыщения воздуха водяными парами неодинаков при одной и той же влажности. Чем выше температура, тем воздух суше, и тем интенсивнее в нем происходит транспирация (испарение воды листьями и другими частями растений).

Сезонное распределение влаги в течение года, а также ее суточное колебание тоже исключительно важно для жизнедеятельности организмов.

По отношению к водному режиму выделяют следующие экологические группы растений и животных: влаголюбивые, сухолюбивые и предпочитающие умеренную влажность. Среди растений различают:

Совместное действие экологических факторов на организм - student2.ru Верблюжья колючка (Alhagi pseudoalhagi) - типичный склерофит

Гидатофиты (от греч. hydor, hydatos - вода), - водные растения, целиком или большей своей частью погруженные в воду (ряска, элодея, кувшинка и др.).

Гидрофиты (от греч. hydor - вода) - наземно-водные растения, погруженные в воду только нижними частями, например стрелолист, частуха и др.

Гигрофиты (от греч. hygros - влажный) - наземные растения, приспособленные к обитанию в условиях избыточной влажности, преимущественно в сырых лесах (папоротники, кислица), на болотах (гелофиты - болотные растения, от греч. helos - болото), на берегах водоемов и в других подобных местах.

Мезофиты (от греч. mesos - средний, промежуточный) - растения умеренно увлажненных местообитаний. К ним относятся луговые травы, многие лесные травы, лиственные деревья, большинство сельскохозяйственных культур и сорняков.

Ксерофиты (от греч. xeros - сухой) - растения сухих местообитаний, делятся на суккулентов и склерофитов.

Суккуленты (от лат. succulentus - сочный) - растения, способные накапливать в тканях большое количество воды (кактусы, алоэ, агава).

Склерофиты (от греч. skleros - сухой, твердый) - засухоустойчивые растения с жесткими, кожистыми листьями и стеблями, эффективно задерживающие испарение воды (саксаул, верблюжья колючка, полынь, ковыль). Они низкорослы, но обладают мощной корневой системой. Корни либо поверхностные, широко разветвленные и хорошо улавливающие атмосферные осадки, либо стержневые, проникающие на большую глубину до грунтовой воды. Листья у многих склерофитов мелкие, сухие, часто в виде игл, колючек, чешуй, покрытые препятствующей испарению кутикулой.

Среди наземных животных различают:

Гидрофилы - влаголюбивые животные (мокрицы, ногохвостки, комары, наземные планарии, наземные моллюски и амфибии).

Мезофилы - обитают в районах с умеренной влажностью (озимая совка, многие насекомые, птицы, млекопитающие).

Ксерофилы - это сухолюбивые животные, не переносящие высокой влажности (верблюды, пустынные грызуны и пресмыкающиеся).

Например, слоновая черепаха запасает воду в мочевом пузыре, некоторые млекопитающие избегают дефицита влаги путем отложения жиров, при окислении которых образуется метаболическая вода. За счет метаболической воды живут многие насекомые, верблюды, курдючные овцы, жирнохвостые тушканчики и др.

301. Биологические ритмы.

БИОЛОГИЧЕСКИЕ РИТМЫ.Многие биологические процессы в природе протекают ритмично, т.е. разные состояния организма чередуются с достаточно четкой периодичностью. Примеры быстрых ритмов – сокращения сердца или дыхательные движения с периодом всего в несколько секунд. У других жизненно важных ритмов, например чередования бодрствования и сна, период составляет около суток. Если биологические ритмы синхронизированы с наступлением приливов и отливов (каждые 12,4 часа) или только одной из этих фаз (каждые 24,8 часа), их называют приливными. У лунных биологических ритмов период соответствует продолжительности лунного месяца, а у годичных – года. Сердечные сокращения и другие формы быстрой ритмичной активности, не коррелирующей с естественными изменениями в окружающей среде, обычно изучаются физиологией и в этой статье рассмотрены не будут.

Биологические ритмы интересны тем, что во многих случаях сохраняются даже при постоянстве условий среды. Такие ритмы называют эндогенными, т.е. «идущими изнутри»: хотя обычно они и коррелируют с ритмичными изменениями внешних условий, например чередованием дня и ночи, их нельзя считать прямой реакцией на эти изменения. Эндогенные биологические ритмы обнаружены у всех организмов, кроме бактерий. Внутренний механизм, поддерживающий эндогенный ритм, т.е. позволяющий организму не только чувствовать течение времени, но и измерять его промежутки, называется биологическими часами.

Работа биологических часов сейчас хорошо изучена, однако внутренние процессы, лежащие в ее основе, остаются загадкой. В 1950-х годах советский химик Б.Белоусов доказал, что даже в однородной смеси некоторые химические реакции могут периодически ускоряться и замедляться. Аналогичным образом, спиртовое брожение в дрожжевых клетках то активируется, то подавляется с периодичностью ок. 30 секунд. Каким-то образом эти клетки взаимодействуют друг с другом, так что их ритмы синхронизируются и вся дрожжевая суспензия дважды в минуту «пульсирует».

Считается, что такова природа всех биологических часов: химические реакции в каждой клетке организма протекают ритмично, клетки «подстраиваются» друг под друга, т.е. синхронизируют свою работу, и в результате пульсируют одновременно. Эти синхронизированные действия можно сравнить с периодическими колебаниями часового маятника.

Циркадианные ритмы.Большой интерес представляют биологические ритмы с периодом около суток. Они так и называются – околосуточными, циркадианными или циркадными – от лат. circa – около и dies – день.

Биологические процессы с циркадианной периодичностью весьма разнообразны. Например, три вида светящихся грибов усиливают и ослабляют свое свечение каждые 24 часа, даже если искусственно держать их при постоянном свете или в полной темноте. Ежесуточно изменяется свечение одноклеточной морской водоросли Gonyaulax. У высших растений в циркадианном ритме протекают различные метаболические процессы, в частности фотосинтез и дыхание. У черенков лимона с 24-часовой периодичностью колеблется интенсивность транспирации. Особенно наглядные примеры – ежесуточные движения листьев и раскрывания-закрывания цветков.

Разнообразные циркадианные ритмы известны и у животных. Примером может служить близкое к актиниям кишечнополостное – морское перо (Cavernularia obesa), представляющее собой колонию из множества крошечных полипов. Морское перо живет на песчаном мелководье, втягиваясь в песок днем и разворачиваясь по ночам, чтобы питаться фитопланктоном. Этот ритм сохраняется в лаборатории при неизменных условиях освещения.

Четко работают биологические часы у насекомых. Например, пчелы знают, когда раскрываются определенные цветки, и навещают их ежедневно в одно и то же время. Пчелы также быстро усваивают, в какое время им выставляют на пасеке сахарный сироп.

У человека не только сон, но и многие другие функции подчинены суточному ритму. Примеры тому – повышение и понижение кровяного давления и выделения калия и натрия почками, колебания времени рефлекса, потливости ладоней и т.д. Особенно заметны изменения температуры тела: ночью она примерно на 1° С ниже, чем днем. Биологические ритмы у человека формируются постепенно в ходе индивидуального развития. У новорожденного они довольно неустойчивы – периоды сна, питания и т.д. чередуются бессистемно. Регулярная смена периодов сна и бодрствования на основе 24–25 часового цикла начинает происходить только с 15-недельного возраста.

Корреляция и «настройка».Хотя биологические ритмы и эндогенны, они соответствуют изменениям внешних условий, в частности смене дня и ночи. Эта корреляция обусловлена т.н. «захватыванием». Например, циркадианные движения листьев у растений сохраняются в полной темноте лишь несколько суток, хотя другие цикличные процессы могут продолжать повторяться сотни раз несмотря на постоянство внешних условий. Когда выдерживаемые в темноте листья фасоли, наконец, прекратили расправляться и опускаться, достаточно короткой вспышки света, чтобы этот ритм восстановился и продержался еще несколько суток. У циркадианных ритмов животных и растений времязадающим стимулом обычно служит изменение освещенности – на рассвете и вечером. Если такой сигнал повторяется периодически и с частотой, близкой к свойственной данному эндогенному ритму, происходит точная синхронизация внутренних процессов организма с внешними условиями. Биологические часы «захватываются» окружающей периодичностью.

Изменяя наружный ритм по фазе, например включая свет на ночь и поддерживая днем темноту, можно «перевести» биологические часы так же, как обычные, хотя такая перестройка требует некоторого времени. Когда человек переезжает в другой часовой пояс, его ритм сна-бодрствования меняется со скоростью два-три часа в сутки, т.е. к разнице в 6 часов он приспосабливается только через два-три дня.

В определенных пределах можно перенастроить биологические часы и на цикл, отличающийся от 24 часов, т.е. заставить их идти с другой скоростью. Например, у людей, долгое время живших в пещерах с искусственным чередованием светлых и темных периодов, сумма которых существенно отличалась от 24 часов, ритм сна и других циркадианных функций подстраивался к новой продолжительности «суток», составлявшей от 22 до 27 часов, однако сильнее изменить его было уже невозможно. То же самое относится и к другим высшим организмам, хотя многие растения могут приспосабливаться к «суткам», продолжительность которых составляет целую часть обычных, например 12 или 8 часов.

Приливные и лунные ритмы.У прибрежных морских животных часто наблюдаются приливные ритмы, т.е. периодические изменения активности, синхронизированные с подъемом и спадом воды. Приливы обусловлены лунным притяжением, и в большинстве регионов планеты происходит два прилива и два отлива в течение лунных суток (периода времени между двумя последовательными восходами Луны.) Поскольку Луна движется вокруг Земли в том же направлении, что и наша планета вокруг собственной оси, лунные сутки примерно на 50 минут длиннее солнечных, т.е. приливы наступают каждые 12,4 часа. Такой же период у приливных ритмов. Например, рак-отшельник прячется от света в отлив и выходит из тени в прилив; с наступлением прилива устрицы приоткрывают свои раковины, разворачивают щупальцы актинии и т.п. Многие животные, в том числе некоторые рыбы, в прилив потребляют больше кислорода. С подъемом и спадом воды синхронизированы изменения окраски манящих крабов.

Многие приливные ритмы сохраняются, иногда в течение нескольких недель, даже если держать животных в аквариуме. Значит, по сути своей они эндогенные, хотя в природе «захватываются» и подкрепляются изменениями во внешней среде.

У некоторых морских животных размножение коррелирует с фазами Луны и происходит обычно один раз (реже – дважды) на протяжении лунного месяца. Польза такой периодичности для вида очевидна: если яйца и сперма выбрасываются в воду всеми особями одновременно, шансы на оплодотворение достаточно высоки. Этот ритм эндогенный и, как считается, задается «пересечением» 24-часового циркадианного ритма с приливным, период которого 12,4 или 24,8 часа. Такое «пересечение» (совпадение) происходят с интервалами 14–15 и 29–30 суток, что соответствует лунному циклу.

Лучше всего и

Наши рекомендации