Микрофиламенты, микротрубочки и промежуточные филаменты как основные компоненты цитоскелета.
Кроме микротрубочек, к фибриллярным компонентам цитоплазмы эукариотических клеток относятся микрофиламенты (microfilamenti) толщиной 5—7 нм и так называемые промежуточные филаменты, или микрофибриллы (microfibrillae), толщиной около 10 нм.
Микрофиламенты встречаются практически во всех типах клеток. По строению и функциям они бывают разные, однако отличить их морфологически друг от друга трудно. Располагаются микрофиламенты в кортикальном слое цитоплазмы, непосредственно под плазмолеммой, пучками или слоями. Их можно видеть в псевдоподиях амеб или в движущихся отростках фибробластов, в микроворсинках кишечного эпителия. Микрофиламенты часто образуют пучки, направляющиеся в клеточные отростки.
Сеть микрофиламентов выявлена в большинстве клеток. Они отличаются по химическому составу. В зависимости от их химического состава они могут выполнять функции цитоскелета и участвовать в обеспечении движения. Эта сеть — часть цитоскелета. С помощью иммунофлюоресцентных методов четко показано, что в состав микрофиламентов кортикального слоя и пучков входят сократительные белки: актин, миозин, тропомиозин, а-актинин. Следовательно, микрофиламенты не что иное, как внутриклеточный сократительный аппарат, обеспечивающий не только подвижность клеток при активном амебоидном их перемещении, но, вероятно, и большинство внутриклеточных движений, таких как токи цитоплазмы, движение вакуолей, митохондрий, деление клетки.
Промежуточные филаменты,или микрофибриллы, тоже белковые структуры. Это тонкие (10 нм) неветвящиеся, часто располагающиеся пучками нити. Характерно, что их белковый состав различен в разных тканях. В эпителии, например, в состав промежуточных филаментов входит кератин. Пучки кератиновых промежуточных филаментов в эпителиальных клетках образуют так называемые тонофибриллы, которые подходят к десмосомам. В состав промежуточных филаментов клеток мезенхимальных тканей (например, фибробластов) входит другой белок — виментин. Для мышечных клеток характерен белок десмин, в нервных клетках в состав их нейрофиламентов также входит особый белок.
Роль промежуточных микрофиламентов скорее всего опорно-каркасная, однако эти фибриллярные структуры не так лабильны, как микротрубочки.
37-38. Химический состав и ультраструктура микрофиламентов и микротрубочек. (См. 36)
39. Особенности химического состава и супрамолекулярной структуры промежуточных филаментов. Промежуточные филаменты названы так потому, что их диаметр составляет около 10 нм, что является промежуточной величиной между диаметром микрофиламентов (6 нм) и микротрубочек (25 нм). В отличие от микрофиламентов и микротрубочек они являются не молекулярными полимерами, а поликонденсатами фибриллярных мономеров. Промежуточные филаменты обнаружены во всех клетках животных, но особенно много их в покровном эпителии, нервной и мышечных тканях.
В центральной части молекулы белков промежуточных филаментов содержится одинаковая аминокислотная последовательность из 130 остатков, формирующая a-спираль. Тем не менее, эти белки обладают выраженной тканевой специфичностью, которая определяется концевыми участками их молекул. Сборка филаментов происходит путем упорядоченной конденсации a-спиральных структур.
Белки промежуточных филаментов принадлежат к одной из четырех различных групп – кератинам, белкам мезенхимных клеток, белкам нейрофибрилл и ламинам.
Кератины представляют собой семейство фибриллярных белков с молекулярной массой 40–70 кД, специфичных для эпителиальных клеток.
К белкам нейрофиламентов относятся три полипептида с молекулярной массой 68, 145 и 220 кД. Они вместе с микротрубочками входят в состав характерных для нервных клеток структур – нейрофибрилл, которые участвуют в формировании системы внутриклеточного транспорта в теле нейрона и его отростках.
Промежуточные филаменты цитоплазмы локализуются в основном вокруг клеточного ядра, а также образуют пучки, идущие от ядра на периферию клетки. Распределение промежуточных филаментов в клетке в значительной степени совпадает с распределением микротрубочек, что отражает их совместное участие во внутриклеточных транспортных системах.
В отличие цитоплазматических белков, образующих фибриллы, локализованные в клеточном ядре ламины A, B и C (молекулярная масса 60-70 кД) собраны в прямоугольные решетки. Сформированный ими остов, или ядерный матрикс, контактирует с внутренней мембраной нуклеолеммы, обеспечивая поддержание размеров и формы клеточного ядра. Ядерный матрикс из ламинов служит также опорной структурой для хромосом. При митозе или мейозе ламины фосфорилируются киназами клеточного деления, что приводит к их деполимеризации и распаду нуклеолеммы на отдельные рассеянные по цитоплазме пузырьки. В конце деления активируются фосфатазы, обеспечивающие полимеризацию ламинов и восстановление ядерного матрикса и нуклеолеммы.
40.Актин и ассоциированные с ним белки. Молекулярные механизмы сокращения актиномиозиновых комплексов.Есть пять основных мест, где может быть приложено действие актин-связывающих белков. Они могут связываться с мономером актина; с «заостренным», или медленно растущим, концом филамента; с «оперенным», или быстро растущим, концом; с боковой поверхностью филамента; и наконец, сразу с двумя филаментами, образуя поперечную сшивку между ними. В дополнение к пяти указанным типам взаимодействия актин-связывающие белки могут быть чувствительны или нечувствительны к кальцию. При таком разнообразии возможностей вряд ли покажется удивительным, что было обнаружено множество актин-связывающих белков и что некоторые из них способны к нескольким типам взаимодействия.
Белки, связывающиеся с мономерами, подавляют формирование затравок, ослабляя взаимодействие мономеров друг с другом. Эти белки могут уменьшать, но могут и не уменьшать скорость элонгации — это зависит от того, будет ли комплекс актина с актин-связывающим белком способен присоединяться к филаментам. Профилин и фрагмин — чувствительные к кальцию белки, взаимодействующие с актиновыми мономерами. Оба нуждаются в кальции для связывания с актином. Комплекс профилина с мономером может надстраивать предсуществующие филаменты, а комплекс фрагмина с актином нет. Поэтому профилин в основном ингибирует нуклеацию, тогда как фрагмин подавляет и нуклеацию, и элонгацию. Из трех нечувствительных к кальцию взаимодействующих с актином белков два — ДНКаза I и белок, связывающийся с витамином D, — функционируют вне клетки. Физиологическое значение их способности связываться с актином неизвестно. В головном мозге есть, однако, белок, который, связываясь с мономерами, деполимеризует актиновые филаменты; его деполимеризующее действие объясняется тем, что связывание мономеров приводит к снижению концентрации доступного для полимеризации актина.Молекулы миозина и актина, взаимодействуя друг с другом, образуют актомиозиновый комплекс, в котором и разыгрываются основные события, приводящие к созданию силы, вызывающей сокращение мышцы. В покоящейся мышце миозиновые мостики не проявляют АТФазной активности, поскольку тропомиозин и белки тропонинового комплекса препятствуют взаимодействию головок миозина с нитью актина. Активация актомиозинового комплекса инициируется ионами Са2+. Концентрация Са2+ в цитоплазме мышечной клетки в покое (расслабленная мышца) составляет менее 0,1 мкм, что гораздо ниже концентрации Са2+ в межклеточной жидкости. Это обусловлено работой специального фермента – кальциевого насоса саркоплазматического ретикулума, который, используя энергию молекул АТФ (АТP), перекачивает Са2+ из цитоплазмы в специальные цистерны. Под действием нервного импульса ионы Са2+ выходят из кальциевых цистерн и связываются с ТnC. Это приводит к структурным изменениям остальных белков тропонинового комплекса. В конечном итоге изменяется положение тропомиозина относительно нити F-актина, и теперь головка миозина может связываться с актином. Тянущая сила, вызывающая смещение миозина вдоль нитей актина, возникает за счет структурных изменений в каталитическом центре миозина после гидролиза молекулы АТФ. Миозин напоминает механическое устройство, в котором головка и шейка миозинового мостика играют роль своеобразного рычага, позволяющего увеличить амплитуду смещения миозинового хвоста. Этот рычаг одним из своих концов опирается на актиновую нить, другой конец рычага соединен с хвостом молекулы миозина (рис. 3). После гидролиза АТФ и диссоциации Фн (Рi) и AДФ (ADP) из каталитического центра в головке миозина происходят структурные перестройки, в результате которых зацепленная за нить актина головка миозина поворачивается на угол a = 30–40°, увлекая за собой хвост миозина (рис. 3). Так возникает сила, вызывающая скольжение толстых нитей миозина вдоль нитей актина.
41. Ультраструктура диктиосом и их функции.Аппарат Гольджи представлен мембранными структурами, собранными вместе в небольшой зоне. Отдельная зона скопления этих мембран является диктиосомой. В диктиосоме плотно друг к другу (на расстоянии 20-25 нм) расположены в виде стопки плоские мембранные мешки, или цистерны, между которыми располагаются тонкие проПо данным электронно-микроскопического исследования, ультраструктура комплекса Гольджи включает три основных компонента:1. Система плоских цистерн. 2. Система трубочек. 3. Крупные и мелкие пузырьки. Все три компонента аппарата Гольджи взаимосвязаны и могут возникать друг из друга. В клетках различных органов и тканей компоненты аппарата Гольджи развиты неодинаково.Функции аппарата Гольджи:1)синтез полисахаридов и гликопротеинов (гликокаликса, слизи);2)модификация белковых молекул (терминальное гликозилирование – включение углеводных компонентов; фосфорилирование – добавление фосфатных групп; ацилирование – добавление жирных кислот; сульфатирование – добавление сульфатных остатков и т.д.;3)конденсация секреторного продукта (в конденсирующих вакуолях) и образование секреторных гранул;4)сортировка белков на транс-поверхности;5)упаковка секреторных продуктов в мембранные структуры.
42. Включения.Помимо мембранных и немембранных органелл в клетках могут быть клеточные включения, представляющие собой непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки.Основное место локализации включений - цитоплазма, но иногда они встречаются и в ядре.По характеру все включения - это продукты клеточного метаболизма. Они накапливаются главным образом в форме гранул, капель и кристаллов. Химический состав включений очень разнообразен.Липоиды обычно откладываются в клетке в виде мелких капель. Большое количество жировых капель встречается в цитоплазме ряда простейших, например инфузорий. У млекопитающих жировые капли находятся в специализированных жировых клетках, в соединительной ткани. Часто значительное количество жировых включений откладывается в результате патологических процессов, например при жировом перерождении печени. Капли жира встречаются в клетках практически всех растительных тканей, очень много жира содержится в семенах некоторых растений.Включения полисахаридов имеют чаще всего формулу гранул разнообразных размеров. У многоклеточных животных и простейших в цитоплазме клеток встречаются отложения гликогена . Гранулы гликогена хорошо видны в световом микроскопе. Особенно велики скопления гликогена в цитоплазме поперечнополосатых мышечных волокон и в клетках печени, в нейронах. В клетках растений из полисахаридов наиболее часто откладывается крахмал. Он имеет вид гранул различной формы и размеров, причем форма крахмальных гранул специфична для каждого вида растений и для определенных тканей. Отложениями крахмала богата цитоплазма клубней картофеля, зерен злаков; каждая крахмальная гранула состоит их отдельных слоев, а каждый слой, в свою очередь, включает радиально расположенные кристаллы, почти невидимые в световой микроскоп.Белковые включения встречаются реже, чем жировые и углеводные. Белковыми гранулами богата цитоплазма яйцеклеток, где они имеют форму пластинок, шариков, дисков, палочек. Белковые включения встречаются в цитоплазме клеток печени, клеток простейших и многих других животных.