Мейоз I (первое деление мейоза)
Профаза I
Это самая продолжительная фаза мейоза (до 90% и более всего времени мейоза). Ее подразделяют на пять этапов:
A) Лептотена.Частичная спирализация хроматина.
Хромосомы переходят в частично конденсированную форму, становятся видны как длинные, тонкие дискретные структуры с осевой белковой нитью. Каждая хромосома обоими концами прикреплена к ядерной мембране с помощью специализированной структуры белковой природы, называемой прикрепительным диском. Хотя каждая хромосома уже реплицирована и состоит из двух сестринских хроматид, они очень тесно сближены и не различимы вплоть до поздней профазы.
Б) Зиготена. Конъюгация гомологичных хромосом, формирование бивалентов.
Процесс спаривания («слипания») гомологичных хромосом называется конъюгацией или синапсисом, а каждая пара объединившихся хромосом – бивалентом, а иногда – тетрадой – из-за четырех хроматид, входящих в состав бивалента. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов, но возможно начало конъюгации и на внутренних участках, с тем же конечным результатом. Обе хромосомы бивалента имеют одинаковую длину, их центромеры занимают одинаковое положение, и они обычно состоят из одинакового числа аллей генов, расположенных в одном и том же порядке. Таким образом, аллели каждого конкретного гена пары гомологичных хромосом контактируют друг с другом.
В) Пахитена. Кроссинговер.
Как только конъюгация охватывает всю длину хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. На этой стадии реализуется кроссинговер – обмен участками между хромосомами, осуществляющийся в результате разрыва и воссоединения между каждыми двумя из четырех нитей бивалента. В таких обменах участвует по одной хроматиде каждой из двух спаренных хромосом, что приводит к появлению перекрестов между двумя не сестринскими хроматидами, обмену аллелями и к появлению новых генных комбинаций в образующихся хроматидах. В пахитене перекресты еще не видны, но позднее все они проявляются в виде хиазм (от греч. chiasma – перекрест).
Кроссинговер является одним из вариантов общей (гомологичной) рекомбинации – механизма, относящегося к основным генетическим процессам. Более подробно о них у нас пойдет речь в 10 классе (тема «02 Основы молекулярной генетики»).
Г) Диплотена. Завершение конъюгации хромосом. Дополнительная частичная спирализация участков гетерохроматина.
Стадия диплотены в профазе I начинается с «разлипания» конъюгировавших хромосом, что позволяет двум гомологичным хромосомам бивалента несколько отодвинуться друг от друга. Однако они все еще связаны одной или несколькими хиазмами, т. е. местами, где произошел кроссинговер.
В ооцитах (развивающихся яйцеклетках) диплотена может растянуться на месяцы или годы, так как именно на этой стадии в хромосомы конденсируется гетерохроматин, но остаются недоспирализованные участки эухроматина, с которых продолжается синтез РНК, обеспечивая яйцеклетку резервными веществами. В особых случаях диплотенные хромосомы становятся исключительно активными в отношении синтеза РНК: такие хромосомы типа ламповых щеток находят у амфибий и некоторых других организмов.
Д) Диакинез. Подготовка к метафазе I.
Диплотена незаметно переходит в диакинез – стадию, предшествующую метафазе. Прекращается синтез РНК и хромосомы конденсируются, утолщаются и отделяются от ядерной мембраны. Теперь ясно видно, что каждый бивалент содержит четыре отдельные хроматиды, причем каждая пара сестринских хроматид соединена центромерой, тогда как несестринские хроматиды, претерпевшие кроссинговер, связаны хиазмами.
Естественно, при полной конденсации хроматина исчезают ядрышки.
Центриоли (если они имеются) удваиваются и мигрируют к полюсам.
Ядерная оболочка разрушается.
Образуется веретено деления.
После окончания длительной профазы I два ядерных деления без разделяющего их периода синтеза ДНК доводят процесс мейоза до конца. Эти стадии обычно занимают суммарно не более 10% всего времени, необходимого для мейоза, и носят те же названия, что и соответствующие стадии митоза.
Метафаза I
1. Кинетохорные нити веретена деления закрепляются с двух сторон на кинетохорах бивалентов – на центромере каждой хромосомы со своей стороны (в митозе не было бивалентов, и нити закреплялись на каждой хромосоме с двух сторон).
2. «Танец бивалентов» (а не хромосом, как в митозе).
3. Биваленты (а не хромосомы) выстраиваются у экватора веретена.
Анафаза I
Нити веретена тянут гомологичные хромосомы, состоящие по-прежнему из двух хроматид, к противоположным полюсам веретена. Таким образом, к разным полюсам клетки расходятся гомологичные хромосомы (по одной хромосоме из каждой пары), а не хроматиды, как в митозе. В результате хромосомы разделяются на два гаплоидных набора – по одному на каждом полюсе веретена, не смотря на то, что масса каждой группы хромосом соответствует диплоидному набору (хроматиды – копии друг друга и содержат абсолютно идентичную информацию, если кроссинговера не было, или различаются лишь несколькими аллелями, если кроссинговер произошел).
Телофаза I
Расхождение гомологичных хромосом к противоположным полюсам соответствует окончанию мейоза I. Число хромосом уменьшилось вдвое, но они все еще состоят из двух хроматид каждая. Веретено деления обычно исчезает.
У животных и у некоторых растений хроматиды обычно частично деспирализуются, на каждом полюсе вновь образуется ядерная оболочка. Затем происходит цитокинез – образованием перетяжки (у животных) или формирование клеточной стенки (у растений), и клетки вступают в интерфазу как при митозе.
У многих растений не наблюдается ни телофазы, ни полноценного цитокинеза, ни интерфазы, и клетка из анафазы I прямо переходит в профазу второго мейотического деления.
Интерфаза II
Эта стадия обычно имеется только у животных клеток, и ее продолжительность может быть различной. Репликация ДНК в интерфазе II никогда не происходит.
Мейоз II
Второе деление мейоза по механизму является типичным митозом. Оно происходит быстро:
Профаза II у всех организмов короткая.
Если телофаза I и интерфаза II имели место, то ядрышки и ядерные мембраны разрушаются, а хроматиды укорачиваются и утолщаются. Центриоли, если они имеются, перемещаются к противоположным полюсам клетки. Во всех случаях, к концу профазы II появляются новые нити веретена деления. Они расположены под прямыми углами к веретену мейоза I.
Метафаза II. Как и в митозе, хромосомы выстраиваются по отдельности на экваторе веретена.
Анафаза II. Аналогична митотической: центромеры делятся (разрушение когезинов) и нити веретена деления растаскивают хроматиды к противоположным полюсам.
Телофаза II. Происходит так же, как телофаза митоза с той лишь разницей, что образуются четыре гаплоидные дочерние клетки. Хромосомы раскручиваются, удлиняются и становятся плохо различимыми. Нити веретена исчезают. Вокруг каждого ядра вновь образуется ядерная оболо6нчка, но ядро содержит теперь половину числа хромосом исходной родительской клетки. При последующем цитокинезе из единственной родительской клетки получается четыре дочерних клетки.
Предварительные итоги:
При мейозе в результате двух последовательных клеточных делений, следующих за одним циклом репликации ДНК, из одной диплоидной клетки образуются четыре гаплоидные.
В мейозе доминирует профаза I, которая может занимать 90% всего времени. В этот период каждая хромосома состоит из двух тесно сближенных сестринских хроматид.
Кроссинговер (перекрест) между хромосомами осуществляется на стадии пахитены в профазе I, при плотной конъюгации каждой пары гомологичных хромосом, что приводит к образованию хиазм, сохраняющих единство бивалентов вплоть до анафазы I.
В результате первого деления мейоза в каждую дочернюю клетку попадает по одной хромосоме из каждой пары гомологов, состоящих в это время из соединенных сестринских хроматид.
Затем без репликации ДНК быстро протекает второе деление, при котором каждая сестринская хроматида попадает в отдельную гаплоидную клетку.
Сопоставление митоза и мейоза I(мейоз II практически идентичен митозу)
Стадия | Митоз | Мейоз I |
Профаза | Гомологичные хромосомы обособлены. Хиазмы не образуются. Кроссинговер не происходит | Гомологичные хромосомы конъюгируют. Хиазмы образуются. Кроссинговер имеет место |
Метафаза | Хромосомы, из двух хроматид каждая, располагаются на экваторе веретена деления | Биваленты, образованные парами гомологичных хромосом, располагаются на экваторе веретена деления |
Анафаза | Центромеры делятся. Расходятся хроматиды. Расходящиеся хроматиды идентичны | Центромеры не делятся. Расходятся целые хромосомы (из двух хроматид каждая) Расходящиеся хромосомы и их хроматиды могут быть неидентичными в результате кроссинговера |
Телофаза | Плоидность дочерних клеток равна плоидности родительских клеток. У диплоидов дочерние клетки содержат обе гомологичные хромосомы | Плоидность дочерних клеток вдвое меньше плоидности родительских клеток. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом |
Где и когда происходит | В гаплоидных, диплоидных и полиплоидных клетках При образовании соматических клеток При образовании спор у некоторых грибов и низших растений. При образовании гамет у высших растений | Только в диплоидных и полиплоидных клетках На каком-либо этапе жизненного цикла организмов с половым размножением, например – при гаметогенезе у большинства животных и при спорогенезе у высших растений. |
Значение мейоза:
1. Половое размножение. Мейоз происходит у всех организмов, размножающихся половым путем. Во время оплодотворения ядра двух гамет сливаются. Каждая гамета содержит гаплоидный (n) набор хромосом. В результате слияния гамет образуется зигота, содержащая диплоидный (2n) набор хромосом. В отсутствие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого последующего поколения, возникающего в результате полового размножения. У всех организмов с половым размножением этого не происходит благодаря существованию особого клеточного деления, при котором диплоидное число хромосом (2n) сокращается до гаплоидного (n).
2. Генетическая изменчивость. Мейоз создает также возможность для возникновения в гаметах новых комбинаций генов, что ведет к генетическим изменениям в потомстве, получаемым в результате слияния гамет. В процессе мейоза это достигается двумя способами, а именно – независимым распределением хромосом при первом мейотическом делении и кроссинговером.
А) Независимое распределение хромосом.
Независимое распределение означает, что в анафазе I хромосомы, составляющие данный бивалент, распределяются независимо от хромосом других бивалентов. Этот процесс лучше всего объяснить на схеме, приведенной справа (черные и белые полоски соответствуют материнским и отцовским хромосомам).
В метафазе I биваленты располагаются на экваторе веретена случайным образом. На схеме представлена простая ситуация, в которой участвуют только два бивалента, а поэтому возможно расположение только двумя способами (при одном из них белые хромосомы ориентированы в одну сторону, а при другом – в разные стороны). Чем больше число бивалентов, тем больше число возможных комбинаций, а, следовательно, тем выше изменчивость. Число вариантов образующихся гаплоидных клеток – 2x. Независимое распределение лежит в основе одного из законов классической генетики – второго закона Менделя.
Б) Кроссинговер.
В результате образования хиазм между хроматидами гомологичных хромосом в профазе I происходит кроссинговер, ведущий к образованию новых комбинаций генов в хромосомах гамет.
Это показано на схеме кроссинговера
Итак, коротко о главном:
Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра, содержащие наборы хромосом, идентичные наборам родительской клетки. Обычно сразу же после деления ядра происходит деление всей клетки с образованием двух дочерних клеток. Митоз с последующим делением клетки приводит к увеличению числа клеток, обеспечивая процессы роста, регенерации и замещения клеток у эукариот. У одноклеточных эукариот митоз служит механизмом бесполого размножения, приводящего к увеличению численности популяции.
Мейоз представляет собой процесс деления клеточного ядра с образованием дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Мейоз называют также редукционным делением, так как при этом число хромосом в клетке уменьшается от диплоидного (2n) до гаплоидного (n). Значение мейоза состоит в том, что у видов с половым размножением он обеспечивает сохранение постоянного числа хромосом в ряду поколений. Мейоз происходит при образовании гамет у животных и спор у растений. В результате слияния гаплоидных гамет при оплодотворении восстанавливается диплоидное число хромосом.
Прочие варианты клеточных делений.
Деление клеток прокариот.
Рассматривая механизмы митоза и мейоза как основные механизмы клеточных делений, не следует забывать, что они возможны лишь у представителей империи Эукариот, иначе громадная империя Прокариот останется вне сферы нашего внимания.
Отсутствие оформленного ядра и тубулярных органоидов (а значит – и веретена деления) делают очевидным тот факт, что механизмы прокариотического деления должны принципиально отличаться от эукариотических.
В клетках прокариот кольцевая молекула ДНК прикреплена к плазмалемме в области одной из мезосом (складок плазматической мембраны). Она прикреплена участком, в котором начинается двунаправленная репликация (он называется ориджином репликации ДНК). Сразу после начала репликации начинается активный рост плазмалеммы, причем встраивание нового мембранного материала идет в ограниченном пространстве плазматической мембраны – между точками прикрепления двух частично реплицированных молекул ДНК.
По мере роста мембраны, реплицированные молекулы ДНК постепенно отдаляются друг от друга, мезосома углубляется, а, напротив нее, закладывается еще одна мезосома. Когда реплицированные молекулы ДНК окончательно отдаляются друг от друга, мезосомы соединяются, и происходит разделение материнской клетки на две дочерние.
Полового размножения у прокариотов нет, поэтому отсутствуют варианты деления с сокращением плоидности, и все разнообразие способов деления сводится к особенностям цитокинеза:
- при равновеликом делении цитокинез равномерный, и образующиеся дочерние клетки имеют сходные размеры; это наиболее распространенный способ цитокинеза у прокариотов;
- при почковании одна из клеток наследует большую часть цитоплазмы материнской клетки, а вторая выглядит маленькой почкой на поверхности большой (пока не отделится). Такой цитокинез дал название целому семейству прокариотов – Почкующиеся бактерии, хотя к почкованию способны не только они.
Особые варианты деления эукариотических клеток.
Эндомитоз
У многих Простейших (пример – Амеба обыкновенная) и большинства Грибов (пример – дрожжи) деление клеток с четким распределением генетического материала и сохранением плоидности (признаки митоза) не сопровождается разрушением ядерной оболочки. Ядро, сохраняя целостность весь период деления, делится перетяжкой в момент цитокинеза (отличие от митоза). Варианты эндомитоза разнообразны по механизмам, разводящим хроматиды к полюсам делящейся клетки (помимо веретена деления, в этом может принимать участие внутренняя мембрана оболочки ядра), и позволяют проследить эволюцию процессов деления, но об этом речь пойдет позже. Сейчас для нас принципиально не путать строго регулируемый эндомитоз с аномальным амитозом, который, при всем внешнем сходстве, является принципиально иным и, чаще всего, – патологическим процессом.
Амитоз
Амитоз представляет собой, так называемое, прямое деление клетки: клетка делится вместе с ядром перетяжкой, без всякого четкого распределения наследственного материала. Это приводит к появлению дочерних клеток с неопределенной плоидностью и нарушенной структурой генетической информации. Такие клетки не способны к дальнейшему делению, а, чаще всего – вообще нежизнеспособны. Таким способом в нашем организме образуются короткоживущие тромбоциты – амитозом мегакариоцитов. Но, в большинстве случаев, так делятся клетки ступившие на путь апоптоза (генетически запрограммированной клеточной гибели).
Остальную информацию вы получите, проанализировав сводную таблицу клеточных делений (цветом выделены основные типы):
Варианты клеточных делений (сводная таблица) | |||||
Организмы | Прокариоты | Эукариоты | |||
Тип деления | Равновеликое или почкование | Митоз | Эндомитоз | Амитоз | Мейоз |
Итог по плоидности: (пл. мат. к.)/ /число д. к. х (пл. д. к.) | Сохраняется: (n) / / 2 х (n) | Сохраняется: (m•n) / / 2 х (m•n) | Сохраняется: (m•n) / / 2 х (m•n) | Нарушается. Дочерние клетки имеют неопределённую плоидность: m•n / / (а•n) + (в•n) | Сокращается вдвое: m•n / / 4 х (m/2•n) |
Предшествование репликации ДНК делению | Да | Да | Да | Да, но может идти с нарушениями. | Да, но далее следуют два деления |
Расхождение хромосом | Упорядоченное | Упорядоченное | Упорядоченное | Случайное | Упорядоченное |
Структуры, разводящие хромосомы к полюсам | Плазмалемма | Веретено деления | Веретено деления и оболочка ядра | Нет подобных структур | Веретено деления |
Судьба оболочки ядра в момент деления клетки | Неприменимо, поскольку исходно отсутствует | Разрушается | Сохраняется весь период и делится перетяжкой | Сохраняется весь период и делится перетяжкой | Разрушается |
Соотношение временных рамок кариокинеза и цитокинеза | Неприменимо, поскольку исходно отсутствует ядро | Кариокинез предшествует цитокинезу | Кариокинез и цитокинез одновременны | Кариокинез и цитокинез одновременны | Кариокинез предшествует цитокинезу |
Жизнеспособность дочерних клеток | жизнеспособны | жизнеспособны | жизнеспособны | Обычно – нежизнеспособны, либо живут крайне недолго. В любом случае неспособны к делению | жизнеспособны |