Сравнение прокариотической и эукариотической клеток
Основная статья: Сравнение строения клеток бактерий, растений и животных
Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970—1980-м гг. стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг. белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.
Сравнение прокариотической и эукариотической клеток
Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов. Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды). Другая важнейшая функция цитоскелета эукариот — обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеток организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот — например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних. Так, размеры прокариотических клеток составляют в среднем 0,5—5мкм, размеры эукариотических — в среднем от 10 до 50 мкм. Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток — это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.
Сравнительная характеристика клеток эукариот и прокариот[4] | ||
Признак | Прокариоты | Эукариоты |
Размеры клеток | Средний диаметр 0,5—10 мкм | Средний диаметр 10—100 мкм |
Организация генетического материала | ||
Форма, количество и расположение молекул ДНК | Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме | Обычно есть несколько линейных молекул ДНК — хромосом, локализованных в ядре |
Компактизация ДНК | У бактерий ДНК компактизируется без участия гистонов[5]. У архей ДНК ассоциирована с белками гистонами[6] | Имеется хроматин: ДНК компактизируется в комплексе с белками гистонами[5]. |
Организация генома | У бактерий экономный геном: отсутствуют интроны и большие некодирующие участки[7]. Гены объединены в опероны[5]. У архей имеются интронные участки особой структуры[8]. | Большей частью геном не экономный: имеется экзон-интронная организация генов, большие участки некодирующей ДНК[7] Гены не объединены в опероны[5]. |
Деление | ||
Тип деления | Простое бинарное деление | Мейоз или митоз |
Образование веретена деления | Веретено деления не образуется | Веретено деления образуется |
Органеллы | ||
Тип рибосом | 70S рибосомы | 80S рибосомы |
Наличие мембранных органелл | Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки | Имеется большое количество одномембранных и двумембранных органелл |
Тип жгутика | Жгутик простой, не содержит микротрубочки, не окружен мембраной, диаметр около 20 нм | Жгутики состоят из микротрубочек, расположенных по принципу «9+2», окружены плазматической мембраной, диаметр около 200 нм |
Анаплазия
Разрушение клеточной структуры (например, при злокачественных опухолях) носит название анаплазии.
Межклеточные контакты
Основная статья: Межклеточные контакты
У высших животных и растений клетки объединены в ткани и органы, в составе которых они взаимодействуют между собой, в частности, благодаря прямым физическим контактам. В растительных тканях отдельные клетки соединяются между собой с помощью плазмодесм, а животные образуют различные типы клеточных контактов.
Плазмодесмы растений — это тонкие цитоплазматические каналы, которые проходят через клеточные стенки соседних клеток, соединяя их между собой. Полость плазмодесм устлана плазмалеммой. Совокупность всех клеток, объединенных плазмодесмами, называется симпластом, между ними возможен регулируемый транспорт веществ.
Межклеточные контакты позвоночных животных на основе строения и функций разделяют на три основных типа: якорные (англ. anchoring junctions), включающие адгезионные контакты и десмосомы, плотные или изоляционные(англ. tight junction) и щелевые или коммуникационные (англ. gap junction). Кроме того, некоторые особые виды соединений между клетками, такие как химические синапсы нервной системы и иммунологические синапсы (между T-лимфоцитами и антигенпредставляющими клетками), объединяют по функциональному признаку в отдельную группу: контакты, которые передают сигналы, (англ. signal-relaying junction). Однако в межклеточном сигнализировании могут участвовать и якорные, щелевые и плотные контакты[2].
Основные характеристики межклеточных контактов позвоночных животных[2] | ||
Якорные контакты | Плотные контакты | Щелевые контакты |
Якорные контакты физически соединяют клетки между собой, обеспечивают целостность и прочность тканей, в частности эпителиальных и мышечных. При образовании контактов этого типа элементы цитоскелета соседних клеток как бы объединяются в единую структуру: с помощью специальных якорных белков они прикрепляются к внутриклеточной части белков кадгенринов, проходящих через плазматическую мембрану, и в межклеточном пространстве прикрепляются к кадгеринам соседних клеток. Различают два основных типа якорных контактов: адгезионные, объединяющие микрофиламенты соседних клеток; и десмосомы, в образовании которых принимают участиепромежуточные филаменты. | Плотные (изоляционные) контакты обеспечивают максимальное сближение мембран соседних клеток, между которыми остается промежуток в 2-3 нм. Этот тип контактов чаще всего возникает вэпителии. Плотные контакты образуют непрерывные пояса вокруг каждой клетки, крепко прижимая их друг к другу и предотвращая протекание межклеточной жидкости между ними. Такие контакты необходимы, в частности, для обеспеченияводонепроницаемости кожи. В формировании тесных контактов принимают участие белки окклюдины, клаудины и другие. | Щелевые (коммуникационные) контакты — это небольшие участки, на которыхплазмалеммы соседних клеток приближены друг к другу на расстояние 2-4 нм и пронизаны белковыми комплексами — коннексонами. Каждый коннексон состоит из шести трансмембранных белков коннексинов, которые окружают небольшие гидрофильные поры диаметром в 1,5 нм. Через эти каналы от одной клетки к другой могут проходить ионы и другие небольшие гидрофильные молекулы. Таким образом происходит общение между соседними клетками. Щелевые контакты характерны для большинства тканей животного организма: в частности, эпителиальной, соединительной, сердечной мышцы, нервной (где формируют электрические синапсы) и др. |
Клеточный цикл
Основная статья: Клеточный цикл
Деление клетки
Клетки лука в различных фазахклеточного цикла
Митоз клеток мыши на стадиителофазы: веретено деления (микротрубочки) закрашены оранжевым, актиновые филаменты — зеленым, хроматин — голубым
Деление раковых клеток (оптический микроскоп, замедленная киносъёмка)
Основная статья: Деление клетки
Дополнительные сведения: Амитоз, Митоз, и Мейоз
См. также: Деление прокариотических клеток
Деление эукариотических клеток]
Амито́з — прямое деление клетки, происходит в соматических клетках эукариот реже, чем митоз. В большинстве случаев амитоз наблюдается в клетках со сниженной митотической активностью: это стареющие или патологически измененные клетки, часто обреченные на гибель (клетки зародышевых оболочек млекопитающих, опухолевые клетки и другие). При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. Таково, например, деление макронуклеусов многих инфузорий, где без образования веретенапроисходит сегрегация коротких фрагментов хромосом. При амитозе делится только ядро, причём без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.
Мито́з (от греч. μιτος — нить) — непрямое деление клетки, наиболее распространённый способ репродукции эукариотических клеток, один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяции тканевых клеток. Биологическое значение митоза заключается в строго одинаковом распределении хромосоммежду дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений[9]. Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений[10]. На основании морфологических особенностей митоз условно подразделяется на:
· профазу,
· прометафазу,
· метафазу,
· анафазу,
· телофазу.
Продолжительность митоза в среднем составляет 1—2 часа[9][11]. В клетках животных митоз, как правило, длится 30—60 минут, а в растительных — 2—3 часа[12]. Клетки человека за 70 лет суммарно претерпевают порядка 1014 клеточных делений[13].
Мейоз (от греч. meiosis — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток или гамет из недифференцированных стволовых. Уменьшение числа хромосом в результате мейоза в жизненном цикле ведёт к переходу от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов. Определённые ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).