Начало работ в области биохимической генетики
К этому времени значительного успеха достигли биологические науки, занимавшиеся изучением физико-химических и физиолого-биохимических основ жизни. В исследованиях этого плана наибольшее внимание привлекали белки, с функциями которых связывались важнейшие, в том числе и наследственные свойства клетки.
В 1913 г. Э.Фишер доказал, что белки – это цепочки из аминокислот, соединенные обнаруженной им пептидной связью. К 1936 г. были открыты все аминокислоты, из которых построены белки. В 30-х годах началось изучение пространственной структуры белков рентгеноструктурными методами. Огромных успехов достигла энзимология – наука о биокатализаторах. Уже давно было известно, что они представляют собой белки. Поскольку белки выполняют важнейшие функции в клетке, присутствуют и в цитоплазме, и в ядре, казалось очевидным, что гены тоже должны иметь белковую природу. Это представление, очень скоро превратившееся в догму о белковой природе гена, впоследствии сильно затормозило прогресс в генетике.
Большую роль в формировании истинных представлений о природе гена, механизме его действия сыграли работы в области биохимической генетики.Первой экспериментальной работой, которая положила начало биохимической генетике, были исследования А.Гаррода (1899–1910). Он обнаружил, что у больных алкаптонурией в крови и моче появляется красный пигмент – окисленная форма гомогентизиновой кислоты (промежуточный продукт окисления фенилаланина). Он предположил, что из-за генетического дефекта у этих больных отсутствует фермент, необходимый для дальнейшего химического превращения гомогентизиновой кислоты. Тем самым обнаружилась связь между конкретной энзиматической реакцией и наследственным дефектом. В дальнейшем эти исследования пополнялись новыми фактами о связи между деятельностью генов и ферментов.
Однако биохимическая генетика как наука оформилась лишь с работы Дж.Бидла и Е.Татума, которые в 1940 г. выдвинули тезис «один ген – один фермент». Из него следовало, что каждый ген ответствен за появление в клетке одного определенного фермента и что действие генов опосредовано ферментами. В этой связи следует упомянуть и работы Р.Гольдшмидта. Создавая физиологическое направление в генетике, он способствовал тому, что действие гена стали понимать как физиолого-биохимический процесс. Важнейшей заслугой Р.Гольдшмидта является то, что он рассматривал функцию гена как определенную энзиматическую реакцию: гены ускоряют или ослабляют скорость этих реакций и тем самым определяют свойства организмов. Одним из первых Гольдшмидт обратил внимание на важность количественной стороныдеятельности генов, установив зависимость скорости реакции от «дозы» гена (по современной терминологии). Значение работ Р.Гольдшмидта для генетики очень велико. И хотя в 30–40-е годы еще нельзя было сказать, каким образом ген определяет скорость энзиматических реакций, является ли он сам энзимом или воздействует на него, работы в этом направлении прямо указывали на необходимость выяснения физико-химической природы гена. Прогресс в этой области тормозился отсутствием ясных, научно обоснованных знаний о молекулярных механизмах, лежащих в основе деятельности гена как единицы генетической функции, рекомбинации и мутации.
Физико-химическая природа гена была установлена в 1953 г., когда генетик Г.Уотсон и физик-теоретик Ф.Крик предложили свою модель молекулярного строения ДНК. К этому времени исследователи были готовы уже отказаться от догмы о белковой природе гена, и было накоплено немало веских доказательств тому, что не белки, а нуклеиновые кислоты служат материалом, из которого построены гены.
Нуклеиновые кислоты были открыты в 70-х годах XIX в., но на протяжении последующих десятилетий их изучали без какой-либо связи с проблемами генетики. Первооткрыватель нуклеиновых кислот Ф.Мишер был учеником и племянником В.Гиса, который и рекомендовал ему изучать химию ядра и цитоплазмы. В 1869 г. Мишер выделил вещество ядра – нуклеин, а в 1889 г. Р.Альтман показал, что основу нуклеина составляет богатая фосфором органическая кислота, которую он назвал нуклеиновой.Таким образом, у истоков исследований нуклеиновых кислот оказался один из основоположников современной эмбриологии В.Гис. Есть свидетельства тому, что это было не случайно, так как интерес к физико-химическим аспектам биологии был характерен для методологии В.Гиса в целом.
Уже в работах Р.Альтмана, а в последующем А.Косселя было показано, что нуклеиновые кислоты находятся в комплексе с белками («альбумином»). Исследование нуклеиновых кислот не привлекало особого внимания вплоть до конца 40-х годов. К этому времени было выяснено, что существуют два типа нуклеиновых кислот, отличающихся по строению: ДНК и РНК. Первая сосредоточена в ядре, вторая – преимущественно в цитоплазме. Впервые о важной роли нуклеиновых кислот исследователи узнали из работ Т.Касперсона и Ж.Браше. Касперсон создал спектрофотометры, с помощью которых измерял содержание ДНК в клетке и в хромосомах. Эта техника, метод количественной окраски ДНК, предложенный Р.Фельгеном еще в 1924 г., а позднее биохимические методы определения количества ДНК в ядрах позволили установить одну из важных закономерностей – правило постоянства видового содержания ДНК и его кратного изменения в соматических клетках. В работах Браше было выявлено, что количество РНК в клетке коррелирует с уровнем синтеза белка, что указывало на направление поисков в выяснении функции РНК.
Впервые генетическая функция нуклеиновых кислот была продемонстрирована в 1944 г. в работе О.Эвери, С. Мак Леода и М. Мак Карти. Еще в 1928 г. Ф.Гриффите установил, что генетические признаки убитых пневмококков могут быть переданы живым пневмококкам. Это явление получило название трансформации.Позже из пневмококков было выделено вещество, ответственное за трансформацию. О.Т.Эвери и его сотрудники показали, что трансформирующий фактор представляет собой ДНК. Однако поскольку в любых препаратах ДНК содержатся белковые примеси, а догма о белковой природе вещества наследственности была еще сильна, эти результаты не были восприняты как указание на то, что ДНК – химическая субстанция генов. Для такого вывода потребовалось еще 10 лет, в ходе которых нуклеиновые кислоты, прежде всего ДНК, были подвергнуты тщательным химическим и физическим (рентгеноструктурным) исследованиям.
Проблема взаимоотношений ядра и цитоплазмы, сформулированная в общих чертах в трудах цитологов и эмбриологов прошлого столетия, в начале XX в. была сведена к проблеме хромосомной локализации генов и к цитогенетическим аспектам. В 30-е годы начинается новый этап исследований роли ядра и цитоплазмы в механизмах наследственности и развития. В формулировании этой проблемы и ее разработке наиболее важную роль сыграли советские биологи Н.К.Кольцов, Б.Л.Астауров и другие представители этой школы.