Строение и функция хромосом
Хромосомы представляют собой надмолекулярный уровень организации генетического материала и морфологический субстрат наследственности. Основным компонентом хромосомы является ДНК, которая обеспечивает хранение, передачу и реализацию генетической информации, представленной в виде специфических полинуклеотидных последовательностей - генов.
Одна хромосома содержит от нескольких сотен до нескольких тысяч структурных генов и:
- представляет одну группу сцепления.
- обеспечивает упорядоченное расположение генов в пространстве и времени;
- обеспечивает сцепленное (совместное) наследование генов.
Хромосомы являются очень динамичными образованиями, меняя свою форму и активность в зависимости от периода клеточного цикла. Кроме того, они отличаются гетерогенностью, благодаря чередованию различных последовательностей ДНК, среди которых:
- кодирующие и некодирующие последовательности;
- уникальные и повторяющиеся последовательности;
- эухроматиновые и гетерохроматиновые сегменты;
- участки, отличающиеся по уровню закручивания хроматиновой нити (размеры петель);
- последовательности, богатые парами АТ и GС;
- участки с разным содержанием ассоциированных белков.
Все это обусловливает полиморфизм хромосом, их дифференциальную окраску и специфическое чередование полос (бэндов).
Каждый индивид, каждая клетка содержит диплоидный набор хромосом, который представлен парами гомологичных хромосом.
23 пары хромосом соматической клетки человека составляют ее кариотип[1]и обеспечивают, как количественно, так и качественно фенотип клетки и организма человека.
В настоящее время существуют различные методы кариотипированиядля выявления численных и структурных хромосомных аномалий с целью диагностики хромосомных болезней, пренатальной диагностики и предупреждения рождения детей с хромосомными болезнями, изучения хромосомных нарушений в опухолевых клетках.
Морфология хромосом лучше всего видна в клетке на стадии метафазы.
Хромосома состоит из двух палочкообразных телец - хроматид. Обе хроматиды каждой хромосомы гомологичны друг другу по генному составу.
Хромосомы неоднородны по длине и имеют центромеру или первичную перетяжку, две теломеры и два плеча. На некоторых хромосомах выделяют вторичные перетяжки и спутники.
ДНК центромеры отличается характерной последовательностью нуклеотидов (состоит из высокоповторяющихся последовательностей, так называемая сателлитная ДНК) и специфическими центромерными белками (CENP-A, B, C, D, E). Положение центромеры в хромосоме постоянно и специфично для каждой хромосомы. Центромера делит хромосому на два плеча: p (проксимальное, или короткое) и q (дистальное, или длинное). В зависимости от расположения центромеры различают акроцентрические, субметацентрические и метацентрические хромосомы.
Как говорилось выше, некоторые хромосомы имеют вторичные перетяжки. Они представляют собой деспирализованные и слабо окрашенные участки повторяющейся ДНК; в норме могут быть как в проксимальных плечах (p) акроцентрических хромосом 13, 14, 15, 21 и 22, так и в дистальных плечах хромосом 1, 9, 16, реже 4, 6, 10 и Y. В отличие от первичной перетяжки (центромеры), вторичные перетяжки не служат местом прикрепления нитей веретена и не играют никакой роли в движении хромосом. Некоторые вторичные перетяжки связаны с образованием ядрышек, в этом случае их называют ядрышковыми организаторами. В ядрышковых организаторах расположены гены рРНК.
Сателлиты, или спутники – это терминальные участки коротких плеч акроцентрических хромосом 13, 14, 15, 21, 22, отделенные вторичной перетяжкой и состоящие из конститутивного гетерохроматина.
Концевые участки хромосом, богатые структурным гетерохроматином, называются теломерами. Теломеры препятствуют слипанию концов хромосом после редупликации и тем самым способствуют сохранению их целостности. Следовательно, теломеры ответственны за существование хромосом как индивидуальных образований.
Так же иногда в хромосомах выделяют ломкие (фрагильные) учаски, которые представляют собой деконденсированные сегменты хромосом, отличающиеся повышенной чувствительностью к действию мутагенных факторов, под влиянием которых в них легко происходят разрывы, и в результате этого – хромосомные перестройки.
Исследование тонкой структуры хромосом показало, что они состоят из ДНК, белка и небольшого количества РНК. Молекула ДНК несет отрицательные заряды, распределенные по всей длине, а присоединенные к ней белки – гистоны – заряжены положительно. Комплекс ДНК с ассоциированными с ней белками называют хроматином.
Хроматин может иметь разную степень конденсации. Конденсированный хроматин называют гетерохроматином, деконденсированный хроматин – эухроматином. Степень деконденсации хроматина отражает его функциональное состояние. Гетерохроматиновые участки функционально менее активны, чем эухроматиновые, в которых локализована большая часть генов.
Различают структурный гетерохроматин, количество которого различается в разных хромосомах, он располагается в околоцентромерных районах. Кроме структурного гетерохроматина существует факультативный гетерохроматин, который появляется в хромосоме при сверхспирализации эухроматических районов. Подтверждением существования этого явления в хромосомах человека служит факт генетической инактивации одной Х-хромосомы в соматических клетках женщины. Его суть заключается в том, что существует эволюционно сформировавшийся механизм инактивации второй дозы генов, локализованных в Х-хромосоме, вследствие чего, несмотря на разное число Х-хромосом в мужском и женском организмах, число функционирующих в них генов уравнено. Максимально конденсирован хроматин во время митотического деления клеток, тогда его можно обнаружить в виде плотных хромосом.
Наследственная информация организма строго упорядочена по отдельным хромосомам. Каждый организм характеризуется определенным набором хромосом (число, размеры и структура), который называется кариотипом. Кариотип человека представлен двадцатью четырьмя разными хромосомами (22 пары аутосом; Х- и Y-хромосомы (или гоносомы (гетеросомы)). Кариотип — это паспорт вида. Анализ кариотипа позволяет выявлять нарушения, которые могут приводить к аномалиям развития, наследственным болезням или гибели плодов и эмбрионов на ранних стадиях развития.
Длительное время полагали, что кариотип человека состоит из 48 хромосом. Однако в начале 1956 г. было опубликовано сообщение, согласно которому число хромосом в кариотипе человека равно 46.
Впервые подразделение кариотипа на группы было проведено в 1960 г. на конференции в г. Денвере (США). В основу Денверской классификациихромосом была положена их морфологическая характеристика: размер, форма и положение первичной перетяжки - центромеры. Согласно данной номенклатуре хромосомы нумеруются от 1 до 23 по мере убывания их длины: с 1 по 22 - аутосомы, а 23 пара- половые хромосомы. Самые крупные хромосомы человека, имеющие первые номера, в среднем 5 раз длиннее самых мелких - 21 и 22 хромосом.
В1971 году в Париже на IV международном конгрессе по генетике человека была согласована единая система идентификации хромосом человека, учитывавшая дифференцировку хромосом по длине (парижская классификация).
Каждая хромосома набора человека при дифференциальной окраске[2] характеризуется уникальным для нее сочетанием темно-окрашенных сегментов или полос, чередующихся с неокрашенными участками или светлыми сегментами. Именно такое специфическое для данной хромосомы сочетание сегментов позволяет четко ее идентифицировать и отличить от других хромосом набора. В пределах короткого (р) и длинного (q) плеча каждой хромосомы выделяют ряд четко идентифицируемых областей или регионов, которые нумеруются арабскими цифрами начиная от центромеры к теломерному участку или терминальному концу хромосомы. Каждая область хромосомы включает определенное число сегментов, нумерация которых (второй арабской цифрой) также идет в направлении от центромерного к теломерному участку. Таким образом, обозначение хромосомного сегмента 2q34 означает хромосому №2, длинное плечо, 3-й регион и 4-й сегмент. Сама центромера обозначается сочетанием цифр 1 и 0, т.е. часть центромеры в пределах короткого плеча обозначается как- р10, а часть, включающая длинное плечо – q10.
Для идентификации хромосом используют морфологические критерии, данные авторадиографического анализа и выявляемые методами дифференциальной окраски бэнды (полосы чередующейся окраски).
Хромосомы характеризуются количественными и качественными морфологическими критериями. Одним из количественных критериев хромосом является их абсолютная длина (в микрометрах, 10-6 м) или относительная длина, равная
Для характеристики положения центромеры на хромосоме используют центромерный индекс, определяемый как .
Таким образом,
= 46 – 49% для метацентрических,
= 31 – 45% для субметацентрических,
= 17 – 30% для акроцентрических.
Номенклатура хромосом.
На основании морфологических количественных (длина и положение центромеры) и качественных (сателлиты и вторичные перетяжки) критериев хромосомы человека классифицируют на 7 групп, которые обозначают буквами латинского алфавита от А до G:
- группаА (пары 1-3) – большие метацентрические хромосомы; хромосома 1 может иметь вторичную перетяжку (1qh), хромосома 2 слабо субметацентрическая;
- группа В(пары 4-5) – большие субметацентрические хромосомы;
- группа С(пары 6-12 и хромосома X) – субметацентрические хромосомы средних размеров; в этой группе у женщин 16 хромосом, у мужчин - 15; хромосомы 8, 9, 10 и 12 более субметацентрические, в то время как хромосомы 6, 7, 11 и X менее субметацентрические; хромосома 9 может иметь вторичную перетяжку на дистальном плече (9qh);
- группа D(пары 13-15) – средние акроцентрические хромосомы; все хромосомы этой группы имеют вторичную перетяжку и сателлит на проксимальном плече;
- группаЕ (пары 16-18) – хромосома 16 средняя метацентрическая, может иметь вторичную перетяжку на дистальном конце; хромосомы 17 и 18 мелкие и субметацентрические;
- группа F(пары 19-20) – мелкие метацентрические хромосомы;
- группа G (пары 21-22 и хромосома Y) – мелкие акроцентрические хромосомы; хромосомы 21 и 22 могут иметь вторичную перетяжку и сателлит на проксимальном плече; хромосома Y не имеет сателлита; хромосомы группы G используют для определения пола: в этой группе у женщин 4 акроцентрические хромосомы (2 хромасомы 21 + 2 хромасомы 22), а у мужчин – 5 акроцентрических хромосом (2 хр. 21 +2хр. 22+Y).
Номенклатура хромосом человека основана на международной системе стандартизации, которая позволяет обозначить нормальный или патологический кариотипы с использованием специальных символов и знаков, отражающих число хромосом и тип нарушения - недостаток, избыток или перераспределение хромосомного материала.
Символы | Значение символа |
A-G | Группы хромосом |
1-22 | Порядковый номер аутосом |
X, Y | Гоносомы (половые хромосомы) |
/ | Хромосомный мозаик |
p | Короткое, проксимальное плечо |
q | Длинное, дистальное плечо |
pter | Конец проксимального плеча |
qter | Конец дистального плеча |
сеn | центромера |
del | Деления, потеря участка хромосомы |
der | Хромосома, возникшая в результате перестройки |
dup | Дупликация, удвоение хромосомного участка |
diс | Дицентрическая хромосома, с двумя центромерами |
fra | Ломкий (фрагильный участок) |
i | Изохромосома с двумя плечами р или q |
ins | Инсерция фрагмента хромосомы |
inv | Инверсия фрагмента хромосомы |
mat | Материнское происхождение |
pat | Отцовское происхождение |
r | Кольцевая хромосома (ring) |
t | Транслокация фрагмента хромосомы на негомологичную хромосому |
upd | Однородительская дисомия |
:: | Разрыв с воссоединением |
+ | Впереди номера хромосомы — добавление целой хромосомы, после номера хромосомы — добавление фрагмента хромосомы |
- | Впереди номера хромосомы - отсутствие целой хромосомы, после номера хромосомы - отсутствие фрагмента хромосомы |
В случае нормального кариотипа человеказаписывается общее число хромосом, затем после запятой следует обозначение половых хромосом: нормальный кариотип женщины – 46 ХХ, нормальный кариотип мужчины - 46, XY.
Аномальные кариотипымогут быть связаны с численными и структурными нарушениями, например:
- аутосомные аномалии - в этом случае записывается общее число хромосом, запятая, половые хромосомы, запятая, + (лишняя хромосома) или - (отсутствие хромосомы), номер вовлеченной в нарушение хромосомы (например: 47, XX, +21 (трисомия 21); 47, XY, +13 (трисомия 13); 45, ХХ, -8 (моносомия 8); и.т.д.;
- гоносомные аномалии - записывается хромосомное число, и после запятой указываются соответствующие половые хромосомы (например: 45, Х0 (моносомия X); 47,XXY (дисомия X); 47,ХХХ (трисомия X)).
Используя метод дифференциальной окраски, в каждой хромосоме можно выявить реперы - важные элементы для идентификации хромосомы (см. рис.):
- чередование бэндов,
- центромера,
- теломеры.
Хромосомные реперы ограничивают районы хромосом, каждый из которых содержит несколько бэндов, а бэнды, в свою очередь, состоят из суббэндов. В метафазных хромосомах различают около 400-500 бэндов, в то время как в хромосомах ранней профазы можно выделить до 1800-2000 бэндов.
Номенклатура бэндов: участки и бэнды нумеруются от центромеры к теломеру для каждого плеча отдельно; например: 7q12 - хромосома (7), дистальное плечо (q), участок (1), бэнд (2).
При обозначении структурных хромосомных нарушений указывают тип перестройки, точки разрывов, бэнд и участок, вовлеченные в нарушение. Например:
- 46, XX, del(1)(q2 lq31) - делеция в хромосоме 1, от района 2, бэнда 1 до района 3, бэнда 1.
- 46, XY, r(2)(p21q31) - кольцевая хромосома 2; точки разрыва находятся в проксимальном плече: район 2 бэнд 1 и в дистальном плече: район 3 бэнд 1.
- 46, XX, inv(2)(p21q31) - перицентрическая инверсия фрагмента от района 2 бэнда 1 проксимального плеча до района 3 бэнда 1 дистального плеча хромосомы 2.
- 46, X, i(Xq) - изохромосома по дистальному плечу хромосомы X.
Генетические карты.
Каждая хромосома специфична по морфологии и характеру дифференциального окрашивания. Хромосомная ДНК подразделяется на две группы участков: с уникальной последовательностью пар нуклеотидов и с повторяющимися последовательностями. Последние различаются по длине каждого повтора и числу повторов (тандемные). Если повтор состоит из 2-8 пар нуклеотидов, то их называют микросателлитами. Другую группу повторов с числом пар нуклеотидов от 10 до 100 000 называют мини-сателлитами. Мини - и микросателлитные тандемные повторы разбросаны по всему геному и представляют собой уникальную для каждого человека комбинацию по числу тандемных повторов в локусах и числу таких локусов. Выявление их характеризует генетический полиморфизм каждого человека, оценка которого используется в медико-генетических и судебно-медицинских целях.
Представление о хромосомах как носителях комплекса генов было высказано на основе наблюдений сцепленного наследования ряда родительских признаков друг с другом при передаче их в ряду поколений. Такое сцепление неальтернативных признаков было объяснено нахождением соответствующих генов в одной хромосоме. Совокупность генов, входящих в состав одной хромосомы, образует группу сцепления. Каждая хромосома уникальна по набору заключенных в ней генов и представляет собой довольно устойчивую структуру. Представление о линейности расположения генов в каждой хромосоме основывается на наблюдении нередко возникающей рекомбинации (взаимообмена) между материнскими и отцовскими комплексами генов, расположенных в гомологичных хромосомах. Это наблюдение дало возможность высказать предположение о связи частоты рекомбинации с последовательностью расположения генов в хромосоме. Представление о линейном распределении генов хорошо объясняло зависимость частоты рекомбинации от расстояния между ними в хромосоме. Открытие сцепленного наследования неальтернативных признаков легло в основу методики построения генетических карт хромосом. В настоящее время существуют генетические карты хромосом, описывающие порядок расположения генов и других генетических элементов на хромосоме с указанием расстояния между ними.
Знание генетических карт необходимо в разных разделах медицинской генетики:
· для диагностики болезней методом сцепления;
· оценки патологических эффектов хромосомных мутаций;
· решение вопросов популяционной и эволюционной генетики.
Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования. Расположение гена в той или иной хромосоме определяет тип наследования соответствующего признака.
Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного организма. При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей. Таким образом, генотип - это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в хромосомном наборе - кариотипе. Хромосомный набор человека состоит из 23 пар хромосом. Кариотип различается у представителей разных полов по одной паре хромосом (гетерохромосомы или половые хромосомы). Различия касаются строения половых хромосом, обозначаемых различными буквами - X и Y (XX или XY). Благодаря половому размножению гены, представленные в геноме уникальными нуклеотидными последовательностями, в генотипе присутствуют в двойной дозе. Исключение составляют гены, расположенные в половых хромосомах, ввиду того, что морфология эти хромосом различна и одна из них (X) крупнее, многие гены имеются лишь в одной гетерохромосоме и отсутствуют или неактивны в другой. Таким образом, генотипы индивидов и их клеток - сбалансированные по дозам генов системы. Нарушение дозовой сбалансированности генотипа сопровождается различными отклонениями в развитии. Гены в генотипе объединены в систему благодаря сложным и разнообразным взаимодействиям между ними, которые играют немаловажную роль реализации информации, заключенной в каждом отдельном гене.
[1] Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы)
[2] В 70-е годы ХХ века были разработаны методы дифференциального окрашивания хромосом человека, которые показали, что каждая пара хромосом имеет свой специфический характер чередования неокрашенных, светло- и темноокрашенных дисков (Парижская классификация хромосом человека). Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.