Геномные мутации. Полиплоидия. Виды полиплоидии
Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.
Полиплоидией (др.-греч. πολύς — многочисленный, πλοῦς — зд. попытка и εἶδος — вид) называют кратное увеличение количества хромосом в клетке эукариот. Полиплоидия гораздо чаще встречается среди растений, нежели среди животных. Среди раздельнополых животных описана у нематод, в частности аскарид, а также у ряда представителей земноводных. Искусственно полиплоидия вызывается ядами, разрушающими веретено деления, такими как колхицин. Различают автополиплоидию и аллополиплоидию. Автополиплоидия — наследственное изменение, кратное увеличение числа наборов хромосом в клетках организма одного и того же биологического вида. На основе искусственной автополиплоидии синтезированы новые формы и сорта ржи, гречихи, сахарной свёклы и других растений.
для полиплоидов растений ди-, три-, тетраплоиды и т. д., имеющие соответственно два, три, четыре и т. д. повторений одного и того же генома. Такие полиплоиды могут возникать спонтанно в результате полиплоидизации соматических клеток растений, в результате чего получаются мозаики — особи, содержащие как диплоидные, так и полиплоидные ткани. Часто полиплоидные формы получают из них путем вегетативного размножения различных частей растения.
Для искусственного получения полиплоидов применяют агенты, блокирующие расхождение удвоившихся хромосом; например, алкалоид колхицин, другие митозные яды, например винбластин, препятствуют полимеризации тубулина и тем самым блокируют расхождение хромосом. Камфора вызывает эндомитотическую полиплоидизацию у дрожжей, при действии на которые колхицин, в частности, не эффективен.
Другой путь возникновения автополиплоидов у растений — образование нередуцированных микро- и макроспор, которое может происходить под влиянием повышения или понижения температуры, действия наркотических веществ и др. В этих случаях хромосомы не конъюгируют в профазе I и могут быть включены в одно ядро в телофазе I. Далее это ядро проходит II деление и образует не четыре, а две клетки — диады. Возможно также нарушение II деления мейоза. В обоих случаях в итоге образуются нередуцированные — диплоидные пыльцевые зерна или яйцеклетки.
Принято различать сбалансированные полиплоиды с четным числом наборов хромосом: 4и, 6п, 8п и т. д. — и несбалансированные полиплоиды с нечетной плоидностью: Зп, 5п, In и т. д. Последние обычно имеют пониженную фертильность, поскольку нечетное повторение каждой из хромосом создает препятствие для их регулярной конъюгации и последующего распределения в мейозе. Такой проблемы не возникает у сбалансированных полиплоидов.
Чаще всего оптимальна четная плоидность; например, опыление тетраплоидного сорта ржи пыльцой диплоидного сорта приводит к образованию триплоидных зародышей, которые погибают на ранних стадиях развития.
Тем не менее у многих растений именно триплоиды проявляют признаки большей мощности и более высокой продуктивности, чем диплоиды или тетраплоиды.
В любом случае получение первичной полиплоидной формы всегда означает только начало селекционного процесса, в ходе которого путем скрещивания полиплоидов и последующей рекомбинации удается оптимизировать выражение признаков и получить гармонично развитые растения.
Аллополиплоидия — кратное увеличение количества хромосом у гибридных организмов. Возникает при межвидовой и межродовой гибридизации. Многие растения являются природными полиплоидами. Однако чаще всего их полишюидные ряды не результат автополиплоидизации, а следствие объединения различных геномов посредством гибридизации. Очевидно, при гибридизации двух разных видов даже с одинаковым числом хромосом у полученного амфигаплоида трудно ожидать нормального течения мейоза. Конъюгация хромосом в профазе I мейоза будет нарушена из-за отсутствия гомологов. Если же геномы А и В, объединившиеся в амфигаплоиде, удвоятся (ААВВ), т. е. произойдет полиплоидизация, то фертильность такого амфидиплоида, или аллотетраплоида, будет восстановлена, поскольку теперь хромосомы могут образовывать нормальные пары при конъюгации. Собственно именно так и поступают при синтезе новых форм путем отдаленной гибридизации.
Эксперименты прекрасно подтверждают теорию О. Винге (1917), согласно которой полиплоидные ряды в природе возникают путем гибридизации видов и последующего удвоения обоих родительских хромосомных наборов. Многие растения действительно представляют собой аллополиплоиды. Например, пшеница Triticum destivum (2л =42) имеет геномную формулу: AABBDD, т. е. является гексаплоидом с тремя разными геномами. Ее геномы АВ соответствуют другому виду пшеницы — аллотетраплоиду Т. dicoccum. Третий геном D, скорее .всего, происходит от злака другого рода — Aegilops squarrosa, имеющего 14 хромосом.
Часто геномы, входящие в состав аллополиплоидов, содержат гомологичные гены и целые участки хромосом, которые называют гомеологичными. Гомеология хромосом выявляется по их способности к гомеологичной конъюгации отдельными участками, содержащими гомологичные гены, что лучше всего показано при изучении аберрантных мейозов у амфигаплоидов. Расщепление по гомологичным генам у аллополиплоидов часто носит характер некумулятивной или кумулятивной полимерии.
Нарушения плоидности у человека:
У человека, как и у подавляющего большинства многоклеточных животных, большая часть клеток диплоидны. Гаплоидны только зрелые половые клетки, или гаметы. Нарушения плоидности (как анеуплоидия, так и более редкая полиплоидия) приводят к серьёзным болезненным изменениям. Примеры анеуплоидии у человека: синдром Дауна — трисомия по 21-й хромосоме (21-я хромосома представлена тремя копиями), синдром Кляйнфельтера — избыточная X хромосома (XXY), синдром Тернера — нулисомия по одной из половых хромосом (X0). Описаны также трисомия по X хромосоме и случаи трисомии по некоторым другим аутосомам (помимо 21-й). Примеры полиплоидии редки, однако известны как абортивные триплоидные зародыши, так и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней) и диплоидно-триплоидные мозаики.
28. Нерасхождение хромосом и его генетические последствия (на примере дрозофилы и человека).
Как показал Морган, при скрещивании белоглазых самок дрозофилы с красноглазыми самцами дочери оказываются красноглазыми, а сыновья белоглазыми. Однако и из этого правила бывают, оказывается, редкие исключения. Примерно у одной из 2 тыс. мух в F1 от такого скрещивания цвет глаз оказывается противоположным: белым у самок и красным у самцов. Бриджес предположил, что появление редких мух возможно при нерасхождении Х-хромосом; другими словами, в тех случаях, когда Х-хромосомы не расходятся в мейозе к разным полюсам, а направляются вместе к одному из полюсов, в результате чего образуются яйцеклетки с двумя Х-хромосомами и яйцеклетки без Х-хромосом.
Если у белоглазой мухи образуется яйцеклетка с двумя Х-хромосомами и эта яйцеклетка оплодотворяется спермием, содержащим У-хромосому, причем обе Х-хромосомы содержат ген белых глаз. Бриджес предположил, что белоглазые самки в потомстве от скрещивания между красноглазыми самцами и белоглазыми самками развиваются именно из таких зигот. Когда же яйцеклетка, не содержащая ни одной Х-хромосомы, оплодотворяется спермием красноглазого самца, несущим Х-хромосому, то в зиготе оказывается одна Х-хромосома, несущая ген красных глаз, а У-хромосомы нет вовсе. Бриджес предположил, что из таких зигот развиваются красноглазые самцы. Другими словами, гипотеза Бриджеса состояла в том, что появляющиеся с частотой 1:2000 белоглазые самки получают по две Х-хромосомы от матери (и У-хромосому от отца), а такие же редкие красноглазые самцы получают лишь одну отцовскую Х-хромосому (и, следовательно, вовсе лишены У-хромосомы).
Гипотеза Бриджеса была умозрительной, но допускала экспирементальную проверку путем изучения хромосомных наборов мух, представляющих собой исключение из общего правила. Прямые наблюдения показали, что в клетках «исключительных» белоглазых самок действительно содержится по две Х-хромосомы и по одной У-хромосоме, а клетки «исключительных» красноглазых самцов имеют по одной Х-хромосоме, тогда как У-хромосома у них отсутствует вовсе. Таким образом, было показано, что конкретный ген вне всяких разумных сомнений локализован в конкретной хромосоме.
Самцы дрозофилы, лишенные У-хромосомы, внешне нормальны, но стерильн. Самки с двумя Х-хромосомами и одной У-хромосомой нормальны и плодовиты. Бриджес скрещивал таких самок (ХХУ) с нормальными красноглазыми самцами (ХУ). Он обнаружил, что около 4%самок в потомстве от таких скрещиваний имеют белые глаза, а около 4% самцов – красные глаза; остальные 96% потомства составляли красногдазые самки и самцы возникающие снова в результате нерасхождения Х-хромосом в мейозе у самок. Он назвал такое нерасхождение вторичным, поскольку оно происходит в потомстве самок, появившихся в результате первичного нерасхождения Х-хромосом (и потому обладающих двумя Х-хромосомами и одной У-хромосомой). Вторичное нерасхождение происходит с частотой около 1:25, а первичное нерасхождение – 1:2000.
Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.
У человека явление нерасхождения хромосом обуславливает возникновение различных форм анеуплоидии. Анеуплоиди́я (греч. an + eu + ploos + eidos — отрицательная приставка + вполне + кратный + вид) — наследственное изменение, при котором число хромосом в клетках не кратно основному набору. Может выражаться, например, в наличии добавочной хромосомы (n + 1, 2n + 1 и т. п.) или в нехватке какой-либо хромосомы (n — 1, 2n — 1 и т. п.). Анеуплоидия может возникнуть, если в анафазе I мейоза гомологичные хромосомы одной или нескольких пар не разойдутся. В этом случае оба члена пары направляются к одному и тому же полюсу клетки, и тогда мейоз приводит к образованию гамет, содержащих на одну или несколько хромосом больше или меньше, чем в норме. Это явление известно под названием нерасхождение. Когда гамета с недостающей или лишней хромосомой сливается с нормальной гаплоидной гаметой, образуется зигота с нечетным числом хромосом: вместо каких-либо двух гомологов в такой зиготе их может быть три или только один. Зигота, в которой количество аутосом меньше нормального диплоидного, обычно не развивается, но зиготы с лишними хромосомами иногда способны к развитию. Однако из таких зигот в большинстве случаев развиваются особи с резко выраженными аномалиями.
Формы: моносомия - это наличие всего одной из пары гомологичных хромосом. Примером моносомии у человека является синдром Тернера, выражающийся в наличии всего одной половой (X) хромосомы. Генотип такого человека X0, пол — женский. У таких женщин отсутствуют обычные вторичные половые признаки, характерен низкий рост и сближенные соски. Встречаемость среди населения Западной Европы составляет 0,03 %.
Трисомия — это наличие трёх гомологичных хромосом вместо пары в норме.
Наиболее часто встречающейся у человека является трисомия по 16-й хромосоме (более одного процента случаев беременности). Однако следствием этой трисомии является спонтанный выкидыш в первом триместре.
Среди новорождённых наиболее распространена трисомия по 21-й хромосоме, или синдром Дауна (2n + 1 = 47). Эта аномалия, названая так по имени врача, впервые описавшего её в 1866 г., вызывается нерасхождением хромосом 21. К числу её симптомов относятся задержка умственного развития, пониженная сопротивляемость болезням, врождённые сердечные аномалии, короткое коренастое туловище и толстая шея, а также характерные складки кожи над внутренними углами глаз, что создаёт сходство с представителями монголоидной расы.
Другие случаи нерасхождения аутосом:
Трисомия 18 (синдром Эдвардса)
Трисомия 13 (синдром Патау)
Трисомия 16 выкидыш
Трисомия 9
Трисомия 8 (синдром Варкани)
Синдром Дауна и сходные хромосомальные аномалии чаще встречаются у детей, рождённых немолодыми женщинами. Точная причина этого неизвестна, но, по-видимому, она как-то связана с возрастом яйцеклеток матери.
Случаи нерасхождения половых хромосом:
XXX (женщины внешне нормальны, плодовиты, иногда отмечается умственная отсталость, пониженная обучаемость, алалия; частота проявления 0,1 %)
XXY, Синдром Клайнфельтера (мужчины, обладающие некоторыми вторичными женскими половыми признаками; бесплодны; яички развиты слабо, волос на лице мало, иногда развиваются молочные железы; обычно низкий уровень умственного развития)
XYY (мужчины высокого роста с различным уровнем умственного развития;)
Тетрасомия (4 гомологичные хромосомы вместо пары в диплоидном наборе) и пентасомия (5 вместо 2-х) встречаются чрезвычайно редко. Примерами тетрасомии и пентасомии у человека могут служить кариотипы XXXX, XXYY, XXXY, XYYY, XXXXX, XXXXY, XXXYY, XYYYY и XXYYY.
29. Пенетрантность – доля особей (в %), у которых рассматриваемяй пизнак проявился среди всех особей данного генотипа.
Экспресссивность – степерь выраженности рассматриваемого признака по отношению к его максимальной выраженности среди всех особей данного генотипа.
Рассматривая действие гена, его аллелей, необходимо учитывать не только генные взаимодействия и действие генов-модификаторов, но и модифицирующее действие среды, в которой развивается организм. Известно, что у примулы окраска цветка розовая (Р—) — белая (рр) наследуется по моногибридной схеме, если растения развиваются в интервале температур 15—25°С. Если же растения f2 вырастить при температуре 30—35°С, то все цветки у них оказываются белыми. Наконец, при выращивании растений F2 в условиях температуры, колеблющейся около 30 °С, можно получить разнообразные соотношения от ЗР—:1рр до 100% растений с белыми цветками. Такое варьирующее соотношение классов при расщеплении в зависимости от условий внешней среды или от условий генотипической среды (так назвал С. С. Четвериков варьирование генотипа по генам-модификаторам) носит название варьирующей пенетрантности. Это понятие подразумевает возможность проявления или непроявления признака у организмов, одинаковых по исследуемым генотипическим факторам.
Пенетрантность выражается долей особей, проявляющих исследуемый признак среди всех особей одинакового генотипа по контролируемому (изучаемому) гену.
От внешней среды и генов-модификаторов может зависеть и степень выраженности признака. Например, дрозофила, гомози-готная по аллели vgvg (зачаточные крылья), более контрастно проявляет этот признак при понижении температуры. Другой признак дрозофилы — отсутствие глаз (еуеу) варьирует от 0 до 50% от числа фасеток, характерного для мух дикого типа.
Степень проявления варьирующего признака называется экспрессивностью. Экспрессивность обычно выражают количественно в зависимости от уклонения признака от дикого типа.
Оба понятия — пенетрантность и экспрессивность — были введены в 1925 г. Н. В. Тимофеевым- Ресовским для описания варьирующего проявления генов.
Тот факт, что признак может проявиться или не проявиться у особей данного генотипа в зависимости от условий или варьировать в различных условиях среды, убеждает в том, что фенотип — это результат действия (и взаимодействия) генов в конкретных условиях существования организма.
Норма реакции — способность реагировать на варьирующие условия развития. Норму реакции генотипа необходимо учитывать как при экспериментах, так и при выведении новых форм хозяйственно ценных организмов. Отсутствие изменений в проявлении признака указывает на то, что используемое воздействие не влияет на данную норму реакции, а гибель организма — на то, что оно уже за пределами нормы реакции. Селекция высокопродуктивных форм растений, животных и микроорганизмов в значительной степени представляет собой отбор организмов с узкой и специализированной нормой реакции на такие внешние воздействия, как удобрения, обильное кормление, характер выращивания и др.
Таким образом, генотип представляет собой систему взаимодействующих генов, которые проявляются фенотипически в зависимости от условий генотипической среды и условий существования. Только благодаря использованию принципов менделевского анализа можно условно разложить эту сложную систему на элементарные признаки — фены и тем самым идентифицировать отдельные, дискретные единицы генотипа — гены.