Выведение гормонов из клеток-продуцентов и транспорт гормонов кровью

Стероидные гормоны благодаря своей липофильности не накапливаются

в эндокринных клетках, а легко проходят через мембрану и поступают в

кровь и лимфу. В связи с этим регуляция содержания этих гормонов в

крови осуществляется путем изменения скорости их синтеза.

Тиреоидные гормоны также липофильны и также легко проходят через

мембрану, однако они ковалентно связаны в эндокринной железе с тире-

оглобулином, поэтому могут выводиться из клетки только после наруше

ния этой связи. Чем больше йодированных тирозилов в составе тиреогло-

булина и чем выше скорость протеолиза йодированного белка, тем больше

тиреоидных гормонов в крови. Регуляция содержания тиреоидных гормо

нов осуществляется двумя путями — ускорением как процессов йодирова

ния, так и разрушения тиреоглобулина.

Гормоны, имеющие белковую и пептидную природу, а также катехолами

ны, гистамин, серотонин и др. — это гидрофильные вещества, которые не

могут диффундировать через клеточную мембрану. Для выведения этих

молекул созданы специальные механизмы, чаще всего пространственно и

функционально разобщенные с процессами биосинтеза.

Многие белково-пептидные гормоны образуются из предшественников

большой молекулярной массы, и выведение этих гормонов становится

возможным только после того, как произойдет отщепление «лишнего»

фрагмента. Так, выведению инсулина из клетки предшествует превраще

ние в В-клетках поджелудочной железы препроинсулина в проинсулин, а

затем в инсулин. Биосинтез инсулина и других белково-пептидных гормо

нов, а также их транспорт к периферии секреторной клетки занимает

обычно 1—3 ч. Очевидно, что воздействие на биосинтез приведет к изме

нению уровня белкового гормона в крови лишь через несколько часов.

Влияние же на выведение этих гормонов, синтезированных «впрок» и за

пасенных в специальных везикулах, позволяет повышать их концентрацию

в несколько раз за секунды или минуты.

Для секреции белково-пептидных гормонов и катехоламинов необходи

мы ионы Са2 + . Принято считать, что для выведения гормонов важна не

собственно деполяризация мембраны, а происходящий при ней вход Са2+

в цитоплазму клетки.

Поступив в кровь, гормоны связываются с транспортными белками,

что защищает их от разрушения и экскреции. В связанной форме гормон с

током крови переносится от места секреции к клеткам-мишеням. В этих

клетках есть рецепторы, которые имеют большее сродство к гормону, чем

белки крови.

Обычно лишь 5—10 % молекул гормона находится в крови в свободном

состоянии, и только свободные молекулы могут взаимодействовать с ре

цептором. Однако, как только они свяжутся с рецептором, равновесие в

реакции взаимодействия гормона с транспортными белками сдвигается в

сторону распада комплекса и концентрация свободных молекул гормона

останется практически неизменной. При избытке гормонсвязывающих

белков в крови концентрация свободных молекул гормона может снизить

ся до критической величины.

Связывание гормонов в крови зависит от их сродства к связывающим

белкам и концентрации этих белков. К их числу относятся транскортин,

связывающий кортикостероиды, тестостерон-эстрогенсвязывающий гло

булин, тироксинсвязывающий глобулин, тироксинсвязывающий преальбу-

мин и др. Едва ли не все гормоны могут связываться с альбумином, кон

центрация которого в крови в 1000 раз больше, чем концентрация других

гормонсвязывающих белков. Однако сродство к альбумину у гормонов в

десятки тысяч раз меньше, поэтому с альбуминами обычно связано 5—

10 % гормонов, а со специфическими белками 85—90 %. Альдостерон,

по-видимому, не имеет специфических «транспортных» белков, поэтому

находится преимущественно в связи с альбумином.

4.3.3. Молекулярные механизмы действия

гормонов

Гормоны, действующие через мембранные рецепторы и системы вто

ричных посредников, стимулируют химическую модификацию белков.

Наиболее хорошо изучено фосфорилирование. Регуляция, происходящая

за счет химических процессов (синтез и расщепление вторичного посред

ника, фосфорилирование и дефосфорилирование белка), развивается и га

сится за минуты или десятки минут.

цАМФ-зависимая

протеинкиназа

Са2*-кальмодулин-

зависимая

протеинкинаэа

Рис. 4.3. Механизм мембранной рецепции проведения гормонального сигнала в

клетке при участии вторичных посредников.

Стероидные и тиреоидные гормоны имеют цитозольные или ядерные

рецепторы, что позволяет им взаимодействовать с хроматином и влиять на

экспрессию генов. Эта регуляция, развивающаяся путем индукции или ре

прессии синтеза мРНК и белков, реализуется спустя 3—6 ч после появле

ния гормона в крови, а гасится спустя 6—12 ч.

Промежуточное положение в этой иерархии занимают факторы роста.

Их взаимодействие с рецептором приводит сначала к фосфорилированию

определенных белков, а затем к делению клеток.

Адренергические рецепторы вне зависимости от локализации (в си

напсе или вне его) относятся к семейству рецепторов, 7 раз пронизываю

щих плазматическую мембрану и сопряженных с G-белками. Известны

алфа-1А-, альфа-1В- и адьфа-1С-адренорецепторы, а-2А-, а-2В- и а-2С-адренорецеп-

торы, а также бета-1-, бета-2- и бета-3-адренорецепторы. Все а-1-рецепторы сти

мулируют фосфолипазу С, гидролизующую фосфоинозитиды. Все а-2-ре-

цепторы ингибируют аденилатциклазу, а все бета-рецепторы ее активируют.

Кроме того, а-2А-рецепторы могут активировать К+-каналы, а-2А- и

а-2В-рецепторы ингибируют Са2+-каналы, а (бета-1 -рецепторы активируют

Са2+-каналы (рис. 4.3).

В каждой клетке функционирует обычно несколько типов рецепторов к

одному и тому же гормону (например, как а-, так и р-адренорецепторы).

Кроме того, клетка чувствительна обычно к нескольким эндокринным

регуляторам — нейромедиаторам, гормонам, простагландинам, факторам

роста и др. Каждый из этих регуляторов имеет характерную только для

Аденилатциклаза

АТФ цАМФ

Белок

Эндоплазматическая

Са2+

КМ

Белок

Физиологический

ответ

GsGi

Ф

Физиологический

ответ

Белок Ф

Белок

КиназаС

Белок

Белок Ф

Рис. 4.4. Механизм

цитоплазматического

(ядерного) действия

стероидных гормонов.

Ra и Rb — две субъеди

ницы рецепторов; Н —

гормон.

него продолжительность и амплитуду регуляторного сигнала, для каждого

характерно определенное соотношение активностей систем генерации вто

ричных посредников в клетке или изменения мембранного потенциала.

На уровне исполнительных систем клетки может происходить как усиле

ние, так и взаимное гашение разных регуляторных сигналов.

На определенных стадиях онтогенеза или при достижении критическо

го для организма отклонения от нормы того или иного фактора гомеостаза

(гипотермия, гипогликемия, гипоксемия, потеря крови и др.) включается

медленная, но наиболее мощная система эндокринной регуляции, дейст

вующая через стероидные (андрогены, эстрогены, прогестины, глюкокор-

тикоиды и минералокортикоиды) и тиреоидные (тироксин и трийодтиро-

нин) гормоны. Молекулы этих регуляторов, имея липофильную природу,

легко проникают через липидный бислой и связываются со своими рецеп

торами в цитоплазме или ядре (рис. 4.4.). Затем гормонрецепторный ком

плекс связывается с ДНК и белками хроматина, что стимулирует синтез

матричной РНК на определенных генах. Трансляция мРНК приводит к

появлению в клетке новых белков, которые вызывают физиологический

эффект этих гормонов.

Стероидные и тиреоидные гормоны могут также репрессировать неко

торые гены, что реализуется в биологический эффект путем уменьшения

количества определенных белков в клетке. Обычно эти гормоны изменяют

содержание того или иного белка не путем ускорения-замедления транс

крипции функционирующих генов, а за счет включения-выключения но

вых генов. Так, например, стимулирование глюкокортикоидами амино-

трансферазной активности печени происходит благодаря появлению в

клетках новых изоформ аминотрансфераз.

К числу белков, экспрессия которых в клетке контролируется гормона

ми, относятся не только ферменты, участвующие в метаболизме, но и

многие рецепторы, а также регуляторные белки и ферменты, участвующие

в обмене вторичных посредников. Благодаря этому стероидные и тиреоид

ные гормоны могут участвовать в формировании не только возрастных и

половых признаков, но и определять психоэмоциональный статус орга

низма, а также баланс катаболических и анаболических реакций в органах

и тканях, их чувствительность к нейромедиаторам и гормонам.

Наши рекомендации