Закономерности наследования при полном и неполном сцеплении генов
Сцепленное наследование генов
Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Постепенно факты исключений из третьего закона Менделя накапливались. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.
Любой организм обладает многообразием морфологических, физиологических, биохимических и прочих признаков и свойств, причем каждый признак или свойство контролируется одним или несколькими генами, локализованными в хромосомах.
Однако если число генов организма огромно и может исчисляться десятками тысяч, то число хромосом сравнительно невелико и, как правило, измеряется несколькими десятками. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.
Установлено полное соответствие между числом групп сцепления и числом пар хромосом. Например, у кукурузы набор хромосом 2n = 20 и 10 групп сцепления, а у дрозофилы 2n = 8 и 4 группы сцепления, то есть число групп сцепления равно гаплоидному набору хромосом.
Закон Томаса Моргана
Гены, локализованные в одной хромосоме, передаются совместно, и способ их наследования отличается от наследования генов, локализованных в разных парах гомологичных хромосом.
Так, например, при независимом распределении хромосом дигибрид АаВb образует четыре типа гамет (АВ, аВ, Аb, аb), а при условии полного сцепления такой же дигибрид даст только два типа гамет (АВ и аb), так как эти гены расположены в одной хромосоме.
Разработка проблемы сцепленного наследования генов принадлежит школе Т.Моргана (1866–1945). Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка хорошо различимы – у самца брюшко меньше и темнее. Кроме того, они имеют различия по многочисленным признакам и могут размножаться в пробирках на дешевой питательной среде.
Изучая закономерности наследования генов, локализанных в одной и той же хромосоме, Морган пришел к выводу, что они наследуются сцепленно. Это и есть закон Т.Моргана.
Полное и неполное сцепление
Для определения типа наследования двух пар генов (сцепленное или независимое) необходимо провести анализирующее скрещивание и по его результатам сделать вывод о характере наследования генов. Рассмотрим три возможных варианта результатов анализирующего скрещивания.
1) Независимое наследование.
Если в результате анализирующего скрещивания среди гибридов образуется четыре класса фенотипов, значит, гены наследуются независимо.
2) Полное сцепление генов.
При полном сцеплении генов А и В по результатам анализирующего скрещивания обнаруживают-
ся два фенотипических класса гибридов, полностью копирующих родителей.
3) Неполное сцепление генов.
В случае неполного сцепления генов А и В при анализирующем скрещивании появляются четыре фенотипа, два из которых имеют новое сочетание генов: Аb‖аb; аВ‖аb. Появление подобных форм свидетельствует о том, что дигибрид с гаметами АВ│ и аb│ образует кроссоверные гаметы Аb│ и аВ│. Появление таких гамет возможно только в результате обмена участками гомологичных хромосом, то есть в процессе кроссинговера. Количество кроссоверных гамет значительно меньшее, чем некроссоверных.
Частота перекреста пропорциональна расстоянию между генами. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и чаще перекрест. Следовательно, о расстоянии между генами в хромосомах можно судить по частоте перекреста.
Генетические карты
Под генетическим картированием обычно понимают определение положения какого-либо гена по отношению к другим генам.
Рассмотрим порядок составления генетических карт.
1. Установление группы сцепления (то есть определение хромосомы, в которой локализован данный ген). Для этого необходимо иметь хотя бы по одному гену-маркеру в каждой группе сцепления.
2. Нахождение места локализации исследуемого гена в хромосоме. Для этого проводится скрещивание мутантной формы с нормальной и учитывается результат кроссинговера.
3. Определение расстояния между сцепленными генами, что позволяет составлять генетические карты хромосом, на которых указаны порядок расположения генов в хромосомах и относительные расстояния их друг от друга. Чем частота кроссинговера выше, тем на большем расстоянии друг от друга располагаются гены. Если установлено, что между сцепленными генами А и В частота кроссинговера 10%, а между генами В и С – 20%, то очевидно, что расстояние ВС в 2 раза больше, чем АВ. Расстояние между генами выражается в единицах, соответствующих 1% кроссинговера. Эти единицы называют морганидами.
Таким образом, на основе данных о частоте кроссинговера составляются генетические карты.
Билет 47
Основные понятия генетики
Основные понятия генетики
Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.
Генотип — совокупность генов организма.
Фенотип — совокупность всех внешних и внутренних признаков организма.
Гомозиго́та — диплоидный организм или клетка, несущий идентичные аллели гена в гомологичных хромосомах.
Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных.
Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.
Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.
Гемизиго́тным называют диплоидный организм, у которого имеется только один аллель данного гена или один сегмент хромосомы вместо обычных двух. Для организмов, у которых гетерогаметный пол мужской (как у людей и всех остальных млекопитающих), почти все гены, связанные с X хромосомой, гемизиготны у самцов, так как у самцов в норме имеется только одна X хромосома. Гемизиготное состояние аллелей или хромосом используется в генетическом анализе с целью поиска места локализации генов, ответственных за какой-либо признак.
ГОМОЛОГИЧНЫЕ ХРОМОСОМЫ
содержат одинаковый набор генов, сходны по морфологич. признакам, конъюгируют в профазе мейоза. В диплоидном наборе хромосом каждая пара хромосом представлена двумя Г. х., к-рые могут различаться аллелями содержащихся в них генов и обмениваться участками в процессе кроссинговера.
Билет 48