Уровни организации жизни на Земле
Митоз,его биологическое значение.Эндомитоз,политения.
3.Кровяной сосальщик: : систематика, геогр.распространение,особенности морфологии,цикл развития, лаб.диагностика и профилактика парагонимоза
Вопрос 1
1. Уровни организации жизни
Несмотря на огромное многообразие форм проявлений жизни, ученые выделяют несколько уровней ее организации. Каждый уровень организации жизни характеризуется специфическими элементарными структурами и специфическими элементарными явлениями.
Молекулярно-генетический уровень
На этом уровне наблюдается удивительное однообразие структур и явлений. Белки всех живых организмов построены из 20 одних и тех же аминокислот. Нуклеиновые кислоты (ДНК и РНК), углеводы и липиды также имеют у всех живых организмов сходное строение.
Единицей наследственной информации является ген – определенная последовательность нуклеотидов в молекуле ДНК. Специфические элементарные явления этого уровня: самоудвоение (репликация) молекулы ДНК, изменение строения молекулы ДНК (мутация), способность передачи информации с помощью матричного синтеза.
Клеточный уровень
Элементарной структурой является клетка, а элементарными явлениями – реакции клеточного обмена веществ.
Онтогенетический уровень
Элементарной структурной единицей является отдельная особь, или организм. Организм рассматривается на протяжении всего периода его существования (онтогенеза).
Элементарное специфическое явление – процесс реализации наследственной информации, закодированной в молекулах ДНК, в признаки и свойства отдельной особи, протекающий в определенных условиях окружающей среды (процесс превращения генотипа в фенотип).
Популяционно-видовой уровень
Элементарной единицей этого уровня является популяция. Популяция – форма существования любого вида.
В качестве элементарного специфического явления на этом уровне выступает элементарное эволюционное явление – длительное изменение генотипического состава (генофонда) популяции, которое возникает в результате действия на популяцию элементарных эволюционных факторов: естественного отбора, популяционных волн, изоляции, мутационного процесса, дрейфа генов.
Биогеоценотический уровень
Элементарной специфической единицей этого уровня является биогеоценоз – исторически сложившееся на определенной территории сообщество животных и растительных организмов, тесно взаимодействующее с окружающей его средой.
Элементарные специфические явления – круговорот веществ и превращение энергии в биогеоценозах.
Биосферный (глобальный) уровень
Этот уровень объединяет все предыдущие уровни. Все круговороты веществ отдельных биогеоценозов составляют единый глобальный круговорот веществ.
Вопрос 2
2.Митоз, кариокинез, или непрямое деление,—универсальный, широко распространенный способ деления клеток. При этом конденсированные и уже редуплицированные хромосомы переходят в компактную форму митотических хромосом, образуется веретено деления, участвующее в сегрегации и переносе хромосом (ахроматиновый митотический аппарат), происходит расхождение хромосом к противоположным полюсам клетки и деление тела клетки (цитокинез, цитотомия).
Процесс непрямого деления клеток принято подразделять на несколько основных фаз: профаза, метафаза, .анафаза, телофаза.
Профаза. После окончания S-периода количество ДНК в интерфазном ядре равно 4 с, так как произошло удвоение хромосомного материала. Однако морфологически регистрировать удвоение числа хромосом в этой стадии не всегда удается. Собственно хромосомы как нитевидные плотные тела начинают обнаруживаться микроскопически в начале процесса деления клетки, а именно в профазе митотического деления клетки. Если попытаться подсчитать число хромосом в профазе, то их количество будет равно 2 n. Но это ложное впечатление, потому что в профазе каждая из хромосом двойная, что является результатом их редупликации в интерфазе. В профазе эти сестринские хромосомы тесно соприкасаются друг с другом, взаимно спирализуясь одна относительно другой, поэтому трудно увидеть двойственность всей структуры в целом. Позднее хромосомы в каждой такой паре начинают обособляться, раскручиваться. Двойственность хромосом в митозе наблюдается у живых клеток в конце профазы, когда видно, что общее их число в начинающей делиться клетке равно 4 n. Следовательно, уже в начале профазы хромосомы состояли из двух сестринских хромосом, или, как их еще называют, хроматид. Число их (4 n) в профазе точно соответствует количеству ДНК (4с).
Параллельно конденсации хромосом в профазе происходят исчезновение, дезинтеграция ядрышек в результате инактивации рибосомных генов в зоне ядрышковых организаторов.
Одновременно с этим в середине профазы начинается разрушение ядерной оболочки, исчезают ядерные поры, оболочка распадается сначала на фрагменты, а затем на мелкие мембранные пузырьки. Меняются в это время и структуры, связанные с синтезом белка. Происходит уменьшение количества гранулярного эндоплазматического ретикулума, он распадается на короткие цистерны и вакуоли, количество рибосом на его мембранах резко падает. Значительно (до 25%) редуцируется число полисом как на мембранах, так и в гиалоплазме, что является признаком общего падения уровня синтеза белка в делящихся клетках.
Второе важнейшее событие при митозе тоже происходит во время профазы — это образование веретена деления. В профазе
уже репродуцировавшиеся в S-периоде центриоли начинают расходиться к противоположным концам клетки, где будут позднее формироваться полюса веретена. К каждому полюсу отходит по двойной центриоли, диплосоме. По мере расхождения диплосом начинают формироваться микротрубочки, отходящие от периферических участков одной из центриолей каждой диплосомы.
Сформированный аппарат деления в животных клетках имеет веретеновидную форму и состоит из нескольких зон: двух зон центросфер с центриолями внутри них и промежуточной между ними зоны волокон веретена. Во всех этих зонах имеется большое число микротрубочек.
Микротрубочки в центральной части этого аппарата, в собственном веретене деления, так же как микротрубочки центросфер, возникают в результате полимеризации тубулинов в зоне центриолей и около специальных структур — кинетохоров, расположенных в области центромерных перетяжек хромосом. В веретене деления принято различать два типа волокон: идущие от полюса к центру веретена и хромосомные, соединяющие хромосомы с одним из полюсов.
В индукции роста микротрубочек веретена в зоне полюса деления принимает участие одна из центриолей диплосомы, а именно материнская. Такое новообразование и рост нитей (пучков микротрубочек) веретена происходят в профазе митоза.
В то же время видны появляющиеся на хромосомах в местах первичных перетяжек пластинчатые кинетохоры, около которых позднее также появляются микротрубочки, идущие в направлении полюсов деления. Таким образом, у животных клеток Центриоли и хромосомные кинетохоры являются центрами организации микротрубочек веретена деления.
Метафаза занимает около трети времени всего митоза. Во время метафазы заканчивается образование веретена деления, а хромосомы выстраиваются в экваториальной плоскости веретена, образуя так называемую метафазную пластинку хромосом, или материнскую звезду. К концу метафазы завершается процесс обособления друг от друга сестринских хроматид. Их плечи лежат параллельно друг другу, между ними хорошо видна разделяющая их щель. Последним местом, где контакт между хроматидами сохраняется, является центромера.
Анафаза. Хромосомы все одновременно теряют связь друг с другом в области центромер и синхронно начинают удаляться друг от друга по направлению к противоположным полюсам клетки. Скорость движения хромосом равномерная, она может достигать 0,2— 0,5 мкм/мин. Анафаза — самая короткая стадия митоза (несколько процентов от всего времени), но за это время происходит ряд событий. Главным из них является обособление двух идентичных наборов хромосом и перемещение их в противоположные концы клетки.
Движение хромосом складываетсяиз двух процессов, расхождения их по направлению к полюсам и дополнительного расхождения самих полюсов.
Предположения о сокращении микротрубочек как о механизме расхождения хромосом в митозе не подтвердились, поэтому многие исследователи поддерживают гипотезу “скользящих нитей”, согласно которой соседние микротрубочки, взаимодействуя друг с другом (например, хромосомные и полюсные) и с сократительными белками, тянут хромосомы к полюсам.
Телофаза начинается с остановки разошедшихся диплоидных (2 n) наборов хромосом (ранняя телофаза) и кончается началом реконструкции нового интерфазного ядра (поздняя телофаза, ранний G1-период) и разделением исходной клетки на две дочерние (цитокинез, цитотомия). В ранней телофазе хромосомы, не меняя своей ориентации (центромерные участки — к полюсу, теломерные — к центру веретена), начинают деконденсироваться и увеличиваться в объеме. В местах их контактов с мембранными пузырьками цитоплазмы образуется новая ядерная оболочка. После замыкания ядерной оболочки начинается формирование новых ядрышек. Клетка переходит в новый G1-период.
Важное событие телофазы — разделение клеточного тела, цитотомия, или цитокинез, который происходит у клеток животных путем образования перетяжки в результате впячивания плазматической мембраны внутрь клетки. При этом в кортикальном, подмембранном слое цитоплазмы располагаются сократимые элементы типа актиновых фибрилл, ориентированные циркулярно в зоне экватора клетки. Сокращение такого/кольца приведет к впячиванию плазматической мембраны в области этого кольца, что завершается разделением клетки перетяжкой на две.
При повреждении митотического аппарата (действие холода или агентов, вызывающих деполимеризацию тубулинов) может произойти или задержка митоза в метафазе, или рассеивание хромосом. При нарушениях репродукции центриолей могут возникать многополюсные и асимметричные митозы и т. д. Нарушения цитотомии приводят к появлению гигантских ядер или многоядерных клеток.
Морфология митотических хромосом
Как интерфазные, так митотические хромосомы состоят из элементарных хромосомных фибрилл — молекул ДНП. В последнее время принято считать, что на каждую хромосому приходится одна гигантская фибрилла ДНП, сложно уложенная в относительно короткое тельце — собственно митотическую хромосому. Установлено, что в митотической хромосоме существуют боковые петли этой гигантской молекулы дезоксирибонуклеопротеида. Боковые петли хромосом в вытянутом состоянии могут достигать 30 мкм. При их компактизации (спирализации) образуются структуры промежуточного характера — так называемые хромонемные фибриллы. Взаимодействие этих компонентов хромосом друг с другом и их взаимная агрегация приводят к конечной компактизации хроматина в виде митотической хромосомы.
Морфологию митотических хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. У большинства хромосом удается легко найти зону первичной перетяжки (центромеры), которая делит хромосому на два плеча. Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины — субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом называют акроцентрическими. В области первичной перетяжки расположен кинетохор. От этой зоны во время митоза отходят микротрубочки клеточного веретена, связанные с перемещением хромосом при делении клетки. Некоторые хромосомы имеют, кроме того, вторичные перетяжки, располагающиеся вблизи одного из концов хромосомы и отделяющие маленький участок — спутник хромосомы. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. В этих местах локализована ДНК, ответственная за синтез рибосомных РНК.
Плечи хромосом оканчиваются теломерами — конечными участками. Размеры хромосом, как и их число, у разных организмов варьируют в широких пределах.
Совокупность числа, размеров и особенностей строения хромосом называется кариотипом данного вида.
При специальных методах окраски хромосомы неравномерно воспринимают красители: вдоль их длины наблюдается чередование окрашенных и неокрашенных участков — дифференциальная неоднородность хромосомы. Важно то, что каждая хромосома имеет свой, неповторимый рисунок такой дифференциальной окраски. Применение методов дифференциальной окраски позволило детально изучить строение хромосом. Хромосомы человека
принято подразделять по их размерам на 7 групп (А, В, С, D, Е, F, G). Если при этом легко отличить крупные (1, 2) хромосомы от мелких (19, 20), метацентрические от акроцентрических (13), то внутри групп трудно различить одну хромосому от другой. Так в группе С6 и С7 хромосомы схожи между собой, так же как и с Х-хромосомой. Дифференциальное окрашивание позволяет четко отличить эти хромосомы друг от друга.
Эндорепродукция
Эндорепродукция — образование клеток с увеличенным содержанием ДНК. Появление таких клеток происходит в результате полного отсутствия или незавершенности отдельных этапов митоза. Существует несколько моментов в процессе митоза, блокада которых приводит к его остановке и появлению полиплоидных клеток, т. е. клеток с увеличенным числом хромосомных наборов. Блокада может наступить при переходе от G2-периода к собственно митозу, остановка может произойти в профазе и метафазе, в последнем случае часто нарушается функция и целость веретена деления. Наконец, следствием нарушения цитотомии также может явиться появление полиплоидных клеток — одноядерных и двуядерных.
При блокаде митоза в самом его начале, при переходе его от G2 к профазе, клетки приступают к следующему циклу репликации, приводящему к прогрессивному увеличению количества ДНК в ядре. При этом не наблюдается никаких морфологических особенностей таких ядер, кроме увеличения их объема.
Появление полиплоидных соматических клеток может происходить в результате блокады деления клеточного тела. В печени взрослых млекопитающих встречаются, кроме диплоидных, тетра- и октаплоидные (8 n) клетки, а также двуядерные клетки разной степени плоидности. Процесс полиплоидизации этих клеток происходит следующим образом. После S-периода клетки, обладающие 4 с количеством ДНК, вступают в митотическое деление, проходят все его стадии, включая телофазу, но не приступают к цитотомии. Таким образом, образуется двуядерная клетка (2 X 2 n). Если она снова проходит 5-период, то оба ядра в такой клетке будут содержать по 4 с ДНК и 4 n хромосом. Такая двуядерная клетка входит в митоз, на стадии метафазы происходит объединение хромосомных наборов (общее число хромосом равно 8 n), а затем — нормальное деление, в результате которого образуются две тетраплоидные клетки. Этот процесс попеременного появления двуядерных и одноядерных клеток приводит к появлению ядер с 8 n, 16 n и даже 32 n количеством хромосом. Подобным способом образуются Полиплоидные клетки в печени, в эпителии мочевого пузыря, в Пигментном эпителии сетчатки, в ацинарных отделах слюнных и поджелудочной желез, мегакариоциты красного костного мозга. Необходимо отметить, что полиплоидизация соматических клеток встречается на терминальных периодах развития клеток, тканей и органов. Она большей частью характерна для специализированных, дифференцированных клеток и не встречается при генеративных процессах, таких как эмбриогенез (исключая провизорные органы) и образование половых клеток; нет полиплоидии среди стволовых клеток.
Вопрос 3
3. Тип Плоские черви, Plathelminthes, Класс Сосальщики, Trematodes,Вид Кровяной сосальщик, Schistosoma haematobium, mansoni, japonicum.
Особ.Морфологии:Раздельнополы,по достижении половой зрелости соединяются попарно,Самец: длина 10-15 мм, на брюшной стороне – желобок для самки.,Самка: длина 20 мм.Яйца:у Schistosoma haematobium снабжены шипом, разрушающим стенку кровеносных сосудов.
Географическое распространение: haematobium (Египет, Южная Африка, Австралия, Иран), mansoni (Африка, Индонезия, Южная Америка), japonicum (Южная Япония, Южный Китай, Филиппинские острова)
Экологическая характеристика:
Haematobium, Japonicum:Неспецифический,Эндопаразит,Временный, 2-х-хозяйный: окончательный – человек и обезьяна, промежуточный – моллюск
mansoni :Специфический,Эндопаразит, Временный, 2-х-хозяйный: окончательный – человек, промежуточный – моллюск
Цикл развития: яйцо → Мирацидий → моллюск → Спороциста I порядка → Спороциста II порядка → церкарии → окончательный хозяин (при купании, перкутарно и алиментарно) → лимфатические и кровеносные сосуды → правый желудочек сердца → лёгкие → вены брыжейки, стенки кишок, мочеполовой системы.
haematobium: яйца проникают в мочевой пузырь и с мочой выводятся наружу (в жаркое время суток).
mansoni: в венах брыжейки и кишки, яйца выводятся с фекалиями.
japonicum: сосуды кишок, яйца выводятся с фекалиями.
Инвазионная стадия для промежуточного хозяина – Мирацидий.
Инвазионная стадия для окончательного хозяина – Церкарии.
Заболевание: haematobium – урогентиальный шистосомоз, mansoni – кишечный шистосомоз, japonicum – японский шистосомоз.
Диагностика: haematobium – обнаружение яиц при микроскопировании мочи, mansoni и japonicum – обнаружение яиц в фекалиях.
Профилактика:
личная: не купаться и не иметь контакта с водой, в которой могут быть церкарии
Общественная: предохранения водоёмов от выделений человека и животных, санпросвет работа
Билет № 9
1.Постэмбриональное развитие:переодизация,закономерности роста и формирования,влияние внешних и внутренних факторов.
2.Количествееная и качественная специфика проявления генов в признаки:пенетрантность,экспрессивность,плейотропность,генокопии.
3.Эхинококк: систематика, геогр.распространение,особенности морфологии,цикл развития, лаб.диагностика и профилактика парагонимоза.
_____________
Вопрос 1
1. Постэмбриональный период начинается с момента рождения (у млекопитающих) или с выхода из яйцевых или зародышевых оболочек и заканчивается смертью. Организм получает питательные вещества в этот период самостоятельно.
Постэмбриональное развитие подразделяют на четыре периода:
· ювенильный (с момента рождения до половой зрелости);
· зрелости (репродуктивный);
· старости;
· смерть (завершающий период онтогенеза).
Ювенильный период морфо-физиологически у различных видов животных протекает неодинаково и зависит от типа онтогенеза. Различают развитие прямое и непрямое (с метаморфозом).
При прямом развитии новорожденное существо сходно со взрослой формой, отличаясь лишь меньшими размерами и недоразвитием отдельных органов и систем. Примеры: млекопитающие, человек.
При непрямом развитии организм претерпевает изменения, превращения – метаморфоз. Метаморфоз бывает неполный и полный.
В случае неполного метаморфоза вышедший из яйцевых оболочек организм (личинка) отличается от взрослой особи, но не резко. В своем развитии каждая особь проходит следующие стадии: яйцо → личинка →имаго. Примеры животных с неполным метаморфозом: вши, клопы, тараканы, саранча, земноводные.
При полном метаморфозе вышедшая из яйца личинка резко отличается от зрелой особи. Каждая особь проходит следующие стадии: яйцо → личинка → куколка → имаго. На стадии куколки происходит два процесса: растворение личиночных органов (гистолиз) и формирование органов имаго (гистогенез).Примеры насекомых с полным метаморфозом:комары, мухи, блохи, бабочки, жуки.
Развитие с метаморфозом является иллюстрацией филогенетического закона Мюллера-Геккеля: онтогенез есть краткое повторение филогенеза. Только у одних видов это повторение происходит в эмбриональный период, а у других захватывает и постэмбриональный. Выбор типа онтогенеза обусловлен особенностями строения яйцеклетки и адаптационными способностями имаго.
Рост и развитие организма
Одной из наиболее характерных черт онтогенеза является увеличение размеров развивающегося организма, т.е. рост. В основе роста лежит увеличение числа клеток, их размеров и накопление межклеточного вещества. Понятие роста тесно связано с развитием организма, вот почему понятия «рост» и «развитие» употребляются вместе.
Классификация типов роста. Существует несколько классификаций типов роста. Прежде всего, выделяют рост:
· ограниченный (определенный) – характерен для организмов, растущих до определенного возраста (мухи, птицы, млекопитающие);
· неограниченный (неопределенный) – характерен для тех, кто растет всю жизнь (рыбы, рептилии, раки, моллюски).
Наряду с этой классификацией, различают рост:
· изометрический – размеры органов увеличиваются с такой же скоростью, как и все тело (рыбы, насекомые);
· аллометрический – органы растут с различной скоростью, и поэтому пропорции тела изменяются (человек, млекопитающие).
Типы роста клеток:
· ауксентичный – увеличение размеров клеток (коловратки, круглые черви, личинки насекомых);
· пролиферативный – увеличение числа клеток:
а) аккреционный – после каждого деления в новый митотический цикл вступает только одна из двух дочерних клеток;
б) мультипликативный – многократное деление всех клеток.
Процесс роста характеризуется рядом закономерностей, которые были сформулированы русским ученым И.И. Шмальгаузеном:
· интенсивность роста наиболее высока в начале онтогенеза, а затем снижается, и в разные периоды она не одинакова;
· в онтогенезе происходит чередование периодов роста и дифференцировки;
· дифференцировка ведет к качественным изменениям клеток, обуславливающих уменьшение или полную потерю ими способности к размножению (например, нервные клетки).
Все эти закономерности присущи и человеку. Самый интенсивный рост наблюдается на 1-м году жизни – 23-25 см; на 2-м – 10-11 см; на 3-м – 8 см. В период с 4 до 7 лет годичный прирост составляет 5-7 см, с 7 до 10 лет – 4-5 см/год. С 11-12 лет у девочек и с 13-14 у мальчиков наблюдается увеличение скорости роста до 7-8 см/год. Это так называемый "пубертатный скачок", соответствующий периоду полового созревания.
На процессы роста и развития оказывают влияние внешние и внутренние факторы. Внешние факторы: свет, питание, температура, вода, кислород, электромагнитное излучение, микроэлементы, сезонные явления и т.д. Они не могут изменить тип развития, но сказываются на скорости роста и развития.
Внутренние факторы: генотип, эндокринная и нервная системы (нейро-эндокринная регуляция).
Известно, что рост наследуется по типу полимерии.
Факторы внешней среды (пища, свет, температура) возбуждают нервные импульсы, под влиянием которых нейросекреторные клетки вырабатывают нейрогормоны. Нейрогормоны управляют деятельностью желез Corpоra allata и проторакальных. Corpоra allata вырабатывают ювенильный гормон, который ведет к сохранению личиночных органов и подавляет экспрессию генов, определяющих строение тела имаго. Проторакальные железы вырабатывают гормон линьки – экдизон, стимулирующий эпидермальные клетки к образованию новой кутикулы. Считают, что рост и развитие у членистоногих контролируется взаимодействием экдизона и ювенильного гормона.
Факторы внешней среды
Нейросекреторные клетки мозга
Нейрогормоны
Corpora allata Проторакальные железы
Ювенильный гормон Экдизон
Личиночные Имагинальные
признаки признаки
Схема регуляции линьки у насекомых
У земноводных превращение головастика в лягушку происходит под воздействием гормона щитовидной железы – тироксина. В эксперименте было показано, что при удалении щитовидной железы головастики в лягушку не превращаются. И наоборот, если головастикам добавлять в пищу вытяжку щитовидной железы, то они быстро превращаются в миниатюрных лягушек.
Половые железы вырабатывают половые гормоны (андрогены и эстрогены), под влиянием которых развиваются вторичные половые признаки. В опытах на петушках и курочках русский ученый М.М. Завадовский впервые установил роль половых желез. Так, у кастрированных петухов прекращается рост гребня, теряется половой инстинкт. Если курочкам пересадить семенники, то они приобретают вторичные половые признаки мужских особей.
Надпочечники вырабатывают гормоны, влияющие на обмен веществ, рост и дифференцировку клеток.
У млекопитающих, в том числе у человека, большая роль в регуляции роста принадлежит гипофизу и щитовидной железе.
Гипофиз состоит из трех долей – передней, средней и задней.
Передняя доля гипофиза вырабатываетследующие гормоны: АКТГ –адренокортикотропный гормон, ТТГ –тиреотропный гормон, ГТГ –гонадотропный гормон, СТГ –соматотропный гормон.
На процесс роста оказывает влияние соматотропный гормон, который управляет синтезом белка в клетке. При гипофункции передней доли гипофиза возникает заболевание нанизм (гипофизарная карликовость)– маленький рост (около 100 см) при сохранении пропорций тела, детские черты лица, недоразвитие вторичных половых признаков, бесплодие. Гиперфункция передней доли гипофиза ведет к гигантизму(рост более 200 см). Если этот гормон вырабатывается в период зрелости, то возникает заболевание – акромегалия(разрастание выступающих частей тела – носа, подбородка, скул, пальцев и т.д.).
Щитовидная железа вырабатывает гормон тироксин, который в клетке управляет энергетическим обменом. При гипофункции щитовидной железы развивается кретинизм(низкий рост, нарушенные пропорции тела, деформация костей, бесплодие, умственная отсталость). Это наследственное заболевание. При недостаточном поступлении йода с пищей может развиться фенокопия кретинизма. Гиперфункция щитовидной железы ведет к Базедовой болезни (зоб, пучеглазие, тахикардия).
В последние 100-150 лет наблюдается ускорение роста и развития человека – акселерация.
Причины акселерации:
· улучшение питания населения;
· увеличение радиоактивного фона и действия радиоволн;
· напряженный темп городской жизни;
· миграция населения и рост числа смешанных браков;
· увеличение продолжительности светового дня.
Вопрос 2
2. генокопии – сходные изменения фенотипа, обусловленные мутациями разных неаллельных генов. Так, гемофилия – несвертываемость крови – может быть вызвана отсутствием в организме разных факторов, которые кодируются разными генами. Хромосомные болезни человека часто сопровождаются бесплодием и умственной отсталостью, однако в каждом конкретном случае изменения могут быть со стороны разных хромосом. Существует две формы глухоты, которые контролируются разными неаллельными генами.
Установление врачом фенокопий важно для прогнозирования рождения в данной семье здорового ребенка. Раскрытие механизма возникновения генокопии позволяет выбрать правильный путь лечения.
Поскольку путь от гена до признака длинный, то наличие гена в генотипе еще не означает, что он проявится фенотипически. Пробиваемость гена в признак - пенетрантность. Пенетрантность равна отношению числа индивидов с данным признаком к общему числу индивидов, имеющих в генотипе данный ген. Принято выражать эту величину в процентах.
Пенетрантность зависит как от внутренних (генотип), так и от внешних факторов (внешняя среда). Рассмотрим это влияние на конкретных примерах.
1. В основе заболевания подагры лежит отложение солей мочевой кислоты в суставах, что ведет к тугоподвижности и появлению болей при движении. Это заболевание определяется доминантным геном. Однако проявление гена в признак будет зависеть как от генотипа, так и от факторов внешней среды. Влияние генотипа: пенетрантность у женщин равна нулю (ХХ половые хромосомы), у мужчин пенетрантность – 20% (ХY половые хромосомы). Влияние внешней среды: пробиваемости гена подагры в признак способствует злоупотребление виноградными винами и мясная пища.
2. Одна из форм шизофрении определяется доминантным геном. Влияние генотипа: пенетрантность у гомозигот (АА) составляет 100%, у гетерозигот (Аа) – 20%. Влияние внешней среды: возникновению заболевания у гетерозигот способствуют факторы, ведущие к перенапряжению центральной нервной системы (стрессовые ситуации, частые конфликты в семье, коллективе; умственное переутомление и т.п.).
Существует еще одна важная характеристика проявления гена в признак – экспрессивность, т.е. степень выраженности признака. Например, серповидноклеточная анемия у гомозигот протекает тяжело, они погибают в раннем возрасте; у гетерозигот – значительно легче, отмечается только одышка при тяжелой работе. В семье, где все страдают брахидактилией (укороченные пальцы), степень укорочения пальцев может быть разная.
Знание пенетрантности и экспрессивности имеет важное практическое значение в работе врача, т.к. появляется возможность предупреждения возникновения наследственного заболевания путем рекомендации пациенту соответствующего образа жизни.
Иногда один ген может контролировать сразу несколько признаков. Это явление носит название плейотропии, или множественного действия гена. Так, у овец один ген контролирует окраску шерсти и степень развития рубца (отдел желудка). У человека примером плейотропии является генетически обусловленный синдром Марфана, при котором один ген вызывает подвывих хрусталика, аневризму (расширение) аорты и нарушения со стороны опорно-двигательного аппарата.
Вопрос 3
3. Тип Плоские черви, Plathelminthes,Класс Ленточные черви, Сestoidea, Вид Эхинококк
Echinococcus granulosus
Морфологич.характеристика
Половозрелая форма:Длина 2-6 мм,3-4 членика, предпоследний – гермафродитный, последний – зрелый (в матке до 5000 яиц с онкосферами),на сколексе 4 присоски и хоботок с двумя венчиками крючьев.
Финна:Размер детской головки,наружная слоистая и внутренняя паренхиматозная капсулы, на которой дочерние пузырьки с выводковыми камерами, где находятся сколексы,полость заполнена жидкостью, содержащей продукты метаболизма
Геогр.распространение:повсеместное, неравномерное (Юго-восток)
Экологич.характеристикаНеспецифический, эндопаразит (тканевой),временный,2-х-хозяйный (окончательный – собака, волк, шакал; промежуточный – человек, крупный и мелкий рогатый скот, свиньи, верблюды, кролики)
Цикл развития:из окончательных хозяев выделяются яйца + членики могут выползать и ползать по шерсти, оставляя яйца → промежуточный хозяин → онкосфера → в кровь, к различным органам → финна → окончательный хозяин.
Инвазионная стадия для промежуточного хозяина - яйца с онкосферами (алиментарный)
Инвазионная стадия для окончательного хозяина – финна (пузырь эхинококка) (алиментарный)
Заболевание: эхинококкоз (печень, лёгкие, головной мозг, трубчатые кости). Виды вреда: механический, токсико-аллергический. Лечение хирургическое. Разрыв смертелен.
Диагностика: иммунологические реакции, рентген, исследование экскрементов собак.
Профилактика: личная (соблюдение правил гигиены, мытьё рук перед едой и после контакта с собаками, скотом), общественная (не скармливать собакам органы больных животных, уничтожать бродячих собак, обследовать и лечить служебных и домашних).
Билет № 10