Ингаляционное поступление радионуклидов

Поверхность альвеол в 50 раз больше поверхности кожи, поэтому ингаляционное поступление РВ в организм может вносить значительный вклад в общее поступление их в организм, особенно в первые дни после радиоактивного загрязнения местности газообразными и аэрозольными коротко живущими продуктами ядерного распада в виде пыли, тумана, дыма. Проникая
в легкие, растворимые радионуклиды быстро всасываются в кровь и разносятся по органам, тканям; труднорастворимые РВ оседают в альвеолах, проникают в межальвеолярное пространство и лимфоузлы, которые становятся критическими органами для этих радионуклидов.

4.1.3. Поступление радионуклидов через кожу,
слизистые оболочки и раны

Этот путь поступления радиоактивных веществ может иметь место при осаждении аэрозольных и твердых радиоактивных частиц на поверхности кожи, всасываемость через поверхность кожи может усиливаться при воздействии химических факторов (отравляющие вещества), других физических факторов – высокой температуры и инфракрасных лучей (ожоги кожных покровов), биологических факторов (бактериальные токсины и воздействие самих микроорганизмов). Через кожу и слизистые оболочки обычно всасываются газообразные радионуклиды йода, трития, водорастворимые соединения плутония, газообразные радон и торон. Критическим органом при этом пути поступления радионуклидов являются кожа и слизистые оболочки.

4.2. Типы распределения радионуклидов в организме
сельскохозяйственных животных.
Группы радиотоксичности РВ

В реальной ситуации возможны различные варианты поступления радионуклидов в организм животных, они могут поступать одно- и многократно. Поведение радионуклидов в организме животных определяется следующими факторами:

1) биогенной значимостью для организмов стабильных изотопов поступающих радионуклидов, тропностью их к определенным тканям и органам: например, кальций выполняет специфическую роль, всегда входит в состав костной и других тканей, проявляет тропность к костной ткани, йод имеет большую тропность к щитовидной железе;

2) физико-химическими свойствами радионуклидов – положением элементов в периодической системе элементов Д.И.Мен­делеева, валентной формой радиоизотопа и растворимостью химического соединения, способностью образовывать коллоидные соединения в крови и тканях и другими факторами.

Основываясь на вышеперечисленных обстоятельствах, по типу распределения радионуклиды подразделяются на четыре основные группы.

Таблица 17

Типы распределения радиоактивных элементов в организме

Тип распределения Элементы
Равномерный (диффузный) Элементы 1 группы период. системы – Н, Li, Na, К, Rb, Cs, Ru, Cl, Br и др.
Скелетный (остеотропный) Щелочно-земельные элементы: Ве, Са, Sr, Ra, Zr, Ir, F и др.
Печеночный La, Ce, Pm, Pu, Th, Mn и др.
Почечный Bi, Sr, As, U, Se и др.
Тиреотропный I, Br, As

Орган, в котором происходит избирательное накопление радионуклидов и вследствие чего он подвергается наибольшему облучению и повреждению, называется критическим.

Попавшие в организм радиоактивные изотопы так же, как
и стабильные изотопы элементов, в результате обмена выводятся из организма с калом, мочой, молоком, яйцом и другими
путями. Период времени, в течение которого из организма выводится половина поступивших радионуклидов, называется биологическим периодом полувыведения (Тбиол.).

Убыль радиоактивных изотопов элемента из организма ускоряется за счет радиоактивного распада. Период времени,
в течение которого распадается половина исходного количества радионуклидов (согласно закону распада радионуклидов), называется физическим периодом полураспада иобозначается Тфиз.Таким образом, снижение количества радионуклидов в организме происходит за счет биологических и физических процессов.

Время, в течение которого активность радионуклидов в организме уменьшается вдвое, называется эффективным периодом полувыведения,обозначается Тэфф.Эффективный период выведения рассчитывается по следующей формуле:

Тэфф. = Тфиз ´ Тбиол./Тфиз. + Тбиол. .

Эффективный период для различных радиоактивных изотопов отличается широким разнообразием: от нескольких часов (для 24Na, 64Cu-) и дней (для 131I, 32Р, 35S) до десятков лет (для 226Ra, 90Sr). Чем больше эффективный период у изотопа, тем выше степень радиотоксичности.

4.3. Классификация радионуклидов по степени
их токсичности

Радиотоксичность – свойство радиоактивных изотопов вызывать бо´льшие или ме´ньшие патологические изменения при попадании их в организм. Она зависит от следующих их свойств:

1. Вида радиоактивного превращения. При альфа-распаде поглощенная доза при одной и той же активности в органе или ткани будет в 20 раз больше по сравнению с поглощенной дозой при бета-распаде, следовательно, лучевое поражение в первом случае будет более выраженным.

2. Имеет значение величина энергии излучения радионуклидов – при большей энергии степень радиопоражаемости выше.

3. В том случае, если изотоп при радиоактивном распаде дает начало новому радиоактивному веществу или целому семейству, повышение суммарной мощности поглощенной дозы повышает радиотоксичность элемента.

4. Имеет значение путь поступления радиоактивных веществ в организм, наиболее опасен пищеварительный путь
поступления их.

5. Важно то, одно- или многократно поступает радиоактивное вещество в организм. При однократном поступлении концентрация их вначале возрастает до максимума, а затем в течение 15-20 суток снижается. При многократном поступлении концентрация радионуклидов остается высокой длительное время и соответственно возрастает радиопоражаемость организмов.

6. Имеет значение тип распределения радиоактивных элементов в организме. При избирательном накоплении РВ в тех или иных органах и системах последние являются критическими и наиболее радиопоражаемыми.

7. Время пребывания радионуклидов в организме определяет время облучения тканей. Чем больше эффективный период полувыведения радионуклидов, тем выше степень его радиотоксичности, так как суммарная доза при прочих равных условиях возрастает с увеличением Тэфф.

В зависимости от среднегодовой допустимой концентрации радионуклидов в воде все РВ подразделяются на 5 групп.

Таблица 18

Классификация радионуклидов по степени радиационной опасности

Груп-па Степень радиотоксичности Активность Радионуклиды
    Бк/л Ки/л  
А Особо высокая 3,7-370 10-10-10-8 210Pb, 226Ra, 232U, 238Pu, 230Th
Б Высокая 37-3700 10-9-10-7 106Ru, 131I, 144Ce, 210Bi, 234Th, 235U, 214Pu, 90Sr
В Средняя 370-37´103 10-8-10-7 22Na, 32P, 35S, 36Cl, 45Ca, 59Fe, 60Co, 89Sr, 90Y, 92Mo, 125Sb, 137Cs, 140Ba, 96Au
Г Малая 370-37´103 10-8-10-7 7Be, 14C, 18F, 57Cr, 55Fe, 64Cu, 129Te, 195Pt, 197Hg, 200Tl
Д - 14,8 ´10 4 4 ´ 10-6 Тритий (3H)и его химические соединения

4.4. Радиотоксикологическая характеристика 131I

Известны 24 радиоактивных изотопа йода с массовыми числами в интервале 117-126 и 128-139, все они искусственные, являются продуктами ядерных реакций. В молодых продуктах ядерного деления (ПЯД) содержатся коротко живущие изотопы 131I, 132I, 133I, 135I; через 1 неделю уже обнаруживаются только изотопы 131I и 133I, через 2 недели – 131I. Период физического полураспада 131I составляет 8,05 дня. Этот изотоп является бета- и гамма-излучателем, по степени радиотоксичности относится к высоко токсичным РВ (группа Б). Реальные источники загрязнения окружающей среды следующие:

1) испытания ядерного оружия в атмосфере, в воде и под землей;

2) радиоактивные отходы промышленных предприятий,
лаборатории, научно-исследовательских учреждений;

3) использование атомной энергетики в мирных целях и др.

Например, при делении 235U в ядерных реакторах накапливается до 2,5 ´ 104 Ки данного радиоизотопа на каждые 1 Мвт тепловой мощности.

Йод как химический элемент активно реагирует со многими веществами, образуя йодаты, перйодаты и йодиды. Пути поступления этого элемента в организм животных следующие: через органы пищеварения с кормом и водой, возможен ингаляционный путь поступления; поступление через кожу, слизистые оболочки, раны и др.

По биологическим свойствам данный элемент является активным биогенным веществом, обладает большой способностью к миграции по звеньям биологической цепи и включается в компоненты биосферы по цепочке: почва – вода, флора – фауна и принимает участие в биологическом цикле обмена веществ.

В растениях йод прочно фиксируется крахмалом и практически не удаляется с их поверхности при промывании водой. По размерам корневого поступления 131I превосходит 90Sr в 14 раз при произрастании на гумусной почве и в 2 раза – на песчаной.

При попадании в организм он полностью всасывается в кровь и до 60 % откладывается в щитовидной железе (критический орган). Концентрация йода в других органах по отношению к концентрации в крови распределяется следующим образом: кровь – 1; почки, печень, яичники – 2-3; молоко – 5-15; щитовидная железа – 10000.

Из организма как стабильные, так и радиоактивные элементы йода выводятся в результате обмена веществ с мочой, калом, молоком, а у птиц – с яйцами. У лактирующих коров из 1 л молока выделяется около 1 % поступившего в организм за 1 день количества радиойода; в желток куриных яиц при длительном поступлении переходит до 16 %, в белок – до 1 % от суточного количества.

При выпасе на территории, однократно загрязненной 131I, пик выведения с молоком приходится на 3 сутки, затем наступает спад, через 3 недели выведение сокращается в 4 раза. Следует отметить, что выведение данного элемента с молоком снижает депонирование его щитовидной железой и снижает радиопоражаемость; величина депонирования и выведения с молоком также зависит от уровня содержания в рационе стабильного йода. Введение в рацион йодистого калия на 50 % снижает депонирование щитовидной железой, на 70 % – депонирование в яйцах. Таким же действием обладает хлористый калий – снижение депонирования в щитовидной железе на 90 %.

Токсическое действие радиоактивного йода проявляется, прежде всего, в поражении щитовидной железы вплоть до разрушения (при воздействии в больших дозах). При этом быстро появляются признаки гипофункции щитовидной железы – потеря аппетита, угнетение, запоры, шелушение кожи и высыхание волоса и шерсти. Развиваются изменения в нервной и эндокринной системах, в кроветворной системе – снижение количества нейтрофилов, лимфоцитов, развитие анемии.

Изменения гормональной регуляции вызывают снижение воспроизводительных качеств, глубокие нарушения функции яичников и семенников. Структурные и функциональные изменения в других органах обуславливаются именно нарушением эндокринной регуляции со стороны щитовидной и половых
желез, надпочечников и гипофиза.

Наши рекомендации