Приспособительные механизмы дыхания при физической нагрузке.
Мышечная работа всегда связана с увеличением газообмена, поскольку энергия черпается в процессе окисления органических веществ. Изменения дыхания четко выражены даже при физических нагрузках, выполняемых малыми мышечными группами. При легкой работе обмен газов может повыситься в 2-3 раза, а при тяжелой - в 20-30 раз по сравнению с уровнем покоя. Исключительно большой удельный вес потребления кислорода при работе зависит не только от его потребления мышцами, непосредственно участвующими в выполнении движений, но и от потребления кислорода мышцами, обеспечивающими высокую легочную вентиляцию, а также мышцей сердца и другими тканями тела.
Согласование дыхания с движениями осуществляется благодаря сложной системе приспособительных изменений в организме, прежде всего биохимическим изменениям в мышечном аппарате и изменениям биомеханических условий при различных движениях.
Активность окислительных процессов тем больше, чем больше мощность выполняемой работы. Это прослеживается в строгих лабораторных условиях, в которых увеличение мощностей сопровождается почти линейным повышением потребления кислорода. Однако в естественных условиях часто не наблюдается строгой пропорциональности между мощностью работы и величиной потребления кислорода. Это может быть связано с различным режимом выполненной работы, когда одна и та же мощность достигается либо путем учащения темпа при малом отягощении, либо путем увеличения перемещаемого груза при редком темпе работы. Исследования доказали, что больший удельный вес темпа при одной мощности работы вызывает достоверное усиление дыхания по сравнению с работой такой же мощности при большем удельном весе отягощения. В ряде случаев оказывается, что при одной и той же мощности работы потребление кислорода возрастает при нарушении координации движений или недостаточном использовании инерционных сил (например, при беге на коньках). Это объясняется вовлечением в двигательную деятельность мышц, не имеющих непосредственного отношения к данной работе, а также дополнительным усилением деятельности дыхательной мускулатуры и мышцы сердца, что приводит к повышению потребления кислорода и к понижению коэффициента полезного действия при выполнении работы. Возможны соотношения и обратного порядка, когда повышение мощности работы достигается без увеличения потребления кислорода или даже при понижении кислородной стоимости движений - за счет более экономной координации движений, лучшего использования инерционных сил, более экономной работы дыхательных и сердечных мышц. Такое изменение экономичности работы происходит в процессе повышения тренированности спортсменов.
Общее понятие о внешнем дыхании
Дыхание - это совокупность процессов, обеспечивающих поступление в организм кислорода, использование его для окисления органических веществ с освобождением энергии и выделением углекислого газа в окружающую среду. В среднем в состоянии покоя человек потребляет в течение минуты 250 мл О2 и выделяет 230 мл СО2. Процесс аэробного окисления является главным в организме и обеспечивает освобождение энергии.
Различают несколько этапов дыхания:
1) газообмен между альвеолами и окружающей средой - вентиляция легких;
2) газообмен между кровью организма и газовой смесью, находящейся в легких;
3) транспорт газов кровью - О2 от легких к тканям, С02 от тканей организма к легким;
4) газообмен между кровью и тканями организма - О2 поступает к тканям, а СО2 из тканей в кровь;
5) потребление О2 тканями и выделение С О2 - тканевое (внутреннее) дыхание.
Совокупность первого и второго этапов дыхания - это внешнее дыхание, обеспечивающее газообмен между окружающей средой и кровью. Оно осуществляется с помощью внешнего звена системы дыхания, включающего легкие с воздухоносными путями, грудную клетку и мышцы, приводящие ее в движение. Прочие этапы дыхания осуществляются посредством внутреннего звена системы дыхания, включающего кровь, сердечно-сосудистую систему, органеллы клеток, и в конечном итоге они обеспечивают тканевое (внутреннее) дыхание.
Значение дыхания заключается в обеспечении организма энергией. Следует отметить, что источником энергии являются органические соединения, поступающие в организм с пищевыми веществами. Дыхание обеспечивает лишь освобождение этой энергии. Энергия освобождается на последнем этапе - тканевом дыхании - при окислении органических соединений. Энергия необходима для деятельности живых клеток, органов, тканей, организма в целом. В процессе дыхания осуществляется регуляция рН внутренней среды.
Система дыхания участвует также в регуляции рН внутренней среды организма за счет выделения Н2СО3 в виде СО2. Механизмы тканевого (внутреннего) дыхания изучаются в курсе биохимии, в курсе физиологии изучаются внешнее дыхание, транспорт газов кровью, механизмы регуляции интенсивности дыхания.
Альвеолярная вентиляция
Вентиляция альвеол конвективным путем (непосредственное поступление свежего воздуха в альвеолы) происходит только при очень интенсивной физической работе. Значительно чаще вентиляция альвеол осуществляется диффузионным способом. Это объясняется тем, что многократное дихотомическое деление бронхиол ведет к увеличению суммарного поперечного сечения воздухоносного пути в дистальном направлении и, естественно, к увеличению его объема. Время диффузии газов в газообменной области и выравнивание состава газовой смеси в альвеолярных ходах и альвеолах составляет около 1с. Состав газов переходной зоны приближается к таковому альвеолярных ходов примерно за это же время - 1 с.
Газообмен между альвеолами и кровью организма
Газообмен осуществляется с помощью диффузии: СО2 выделяется из крови в альвеолы, О2 поступает из альвеол в венозную кровь, пришедшую в легочные капилляры из всех органов и тканей организма. При этом венозная кровь, богатая СО2 и бедная О2, превращается в артериальную, насыщенную О2 и обедненную С О2. Газообмен между альвеолами и кровью идет непрерывно, но во время систолы больше, чем во время диастолы.
Движущая сила, обеспечивающая газообмен в альвеолах, - это разность парциальных давлений Ро2 и Рсо2 в альвеолярной смеси газов и напряжений этих газов в крови. Парциальное давление газа (partialis - частичный) - это часть общего давления газовой смеси, приходящаяся на долю данного газа. Напряжение газа в жидкости зависит только от парциального давления газа над жидкостью, и они равны между собой .
Таблица 2.1Ро2 и Рсо2 в альвеолах и напряжение этих газов в крови в мм рт. ст. и кПа (цифры в скобках)
Газы | Венозная кровь, поступающая в легкие | Альвеолярная смесь газов | Капиллярная кровь в легких (артерилизованная) |
О2 | 40(5.3) | 100(13.3) | 100(13.3) |
СО2 | 46(6.1) | 40(5.3) | 40(5.3) |
Ро2 и Рсо2 в альвеолах и капиллярах уравниваются.
Кроме градиента парциального давления-напряжения, обеспечивающего газообмен в легких, имеется и ряд других, вспомогательных факторов, играющих важную роль в газообмене.
Факторы, способствующие диффузии газов в легких.
1. Огромная поверхность контакта легочных капилляров и альвеол (60- 120 м2). Альвеолы представляют собой пузырьки диаметром 0,3-0,4 мм, образованные эпителиоцитами. Причем каждый капилляр контактирует с 5-7 альвеолами.
2. Большая скорость диффузии газов через тонкую легочную мембрану около 1 мкм. Выравнивание Ро2 в альвеолах и крови в легких происходит за 0,25 с; кровь находится в капиллярах легких около 0,5 с, т.е. в 2 раза больше. Скорость диффузии СО2 в 23 раза больше таковой О2, т.е. имеется высокая степень надежности в процессах газообмена в организме.
3. Интенсивная вентиляция легких и кровообращение - активация вентиляции легких и кровообращения в них, естественно, способствует диффузии газов в легких.
4. Корреляция между кровотоком в данном участке легкого и его вентиляцией. Если участок легкого плохо вентилируется, то кровеносные сосуды в этой области суживаются и даже полностью закрываются. Это осуществляется с помощью механизмов местной саморегуляции - посредством реакций гладкой мускулатуры: при снижении в альвеолах Ро2 возникает вазоконстрикция.
Изменение содержания О2 и СО2 в легких. Газообмен в легком, естественно, ведет к изменению газового состава в легком по сравнению с составом атмосферного воздуха. В покое человек потребляет около 250 мл О2 и выделяет около 230 мл СО2. Поэтому в альвеолярном воздухе уменьшается количество О2 и увеличивается - СО2 (табл. 2.2).
Таблица 2.2Состав атмосферного воздуха и газовой смеси легких (в %)
Компоненты | Атмосферный воздух | Выдыхаемая смесь газов | Альвеолярная смесь газов |
О2 | 20,93 | 16,0 | 14,0 |
СО2 | 0,04 | 4,0 | 5,5 |
Азот и инертные газы | 78,5 | 74,9 | 74,5 |
Пары воды | 0,5 | 5,5 | 5,6 |
Изменения содержания О2 и СО2 в альвеолярной смеси газов являются следствием потребления организмом О2 и выделения СО2. В выдыхаемом воздухе количество О2 несколько возрастает, а СО2 - уменьшается по сравнению с альвеолярной газовой смесью вследствие того, что к ней добавляется воздух воздухоносного пути, не участвующий в газообмене и, естественно, содержащий СО2 и О2 в таких же количествах, как и атмосферный воздух. Кровь, обогащенная О2 и отдавшая СО2, из легких поступает в сердце и с помощью артерий и капилляров распределяется по всему организму, в различных органах и тканях отдает О2 и получает СО2 .
Газообмен в легких
Изменение состава воздуха в легких
В состав атмосферного воздуха входит почти 21 % кислорода, около 79 % азота, примерно 0,03 % углекислого газа, небольшое количество водяного пара и инертных газов. Такой воздух мы вдыхаем. Благодаря изменениям частоты и глубины дыхания в альвеолах поддерживается относительно стабильный состав газов. Процентный состав выдыхаемого воздуха иной: количество кислорода в нем понижается, а углекислого газа увеличивается. Содержание водяного пара в выдыхаемом воздухе больше по сравнению с вдыхаемым, только азот и инертные газы остаются неизменными.
Обмен газов в легких
В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови переходит в легкие с помощью диффузии через стенки альвеол и кровеносных капилляров.Направление и скорость диффузии определяются парциальным давлением.
Парциальное давление - это давление, под которым была бы та часть газа из общего состава, если бы она занимала весь объем, равный смеси газов. А диффузия - это движение частичек, благодаря которому вещества проходят через мембраны, выравнивая свою концентрацию .
Механизм газообмена в легких состоит в том, что во время вдоха атмосферный воздух поступает в легкие и в альвеолах смешивается с оставшимся в них после выдоха воздухом (этот воздух, даже при самом интенсивном выдохе, не позволяет легким спадать). Поступающий в легкие воздух отличается по своему составу от воздуха в альвеолах .
Каким образом кислород переходит из альвеолярного воздуха, а углекислый газ в альвеолярный воздух? У здорового человека при условиях нормального барометрического давления парциальное давление кислорода в альвеолярном воздухе составляет 100 мм рт. ст. и значительно выше, чем в венозной крови, протекающей по капиллярам альвеол (40 мм рт. ст.).
Парциальное давление углекислого газа выше в венозной крови (46 мм рт. ст.), чем в альвеолярном воздухе (40 мм рт. ст.). Таким образом, благодаря разнице парциальных давлений обеспечивается переход кислорода из альвеолярного воздуха в кровь, а углекислого газа в альвеолярный воздух. Поступившие в кровь молекулы кислорода взаимодействуют с гемоглобином эритроцитов, образуя оксигемоглобин. Так кровь из венозной превращается в артериальную.
По легочным венам артериальная кровь поступает в левое предсердие, потом - в левый желудочек, отсюда - в большой круг кровообращения, которым переносится к тканям.
Углекислый газ из венозной крови поступает в легочные пузырьки и во время выдоха выводится из организма. Скорость диффузии газов в легочных капиллярах довольно велика: за время течения крови по легочным капиллярам (в среднем 0,3 с) давление газов в крови и альвеолах выравнивается. Это связано с большой общей поверхностью капилляров и особенностями строения альвеолярно-капиллярного барьера.
Несмотря на периодическое поступление атмосферного воздуха, состав альвеолярного воздуха постоянный, хотя и отличается от вдыхаемого. Это обеспечивается интенсивным обменом газов, то есть непрерывным поступлением кислорода и удалением углекислого газа, и имеет большое значение для поддержания постоянства внутренней среды организма (гомеостаза).