Структура бактериальной клетки(капсулы, жгутики, ворсинки) Микроскопические методы выявления. Споры бактерии. Спорообразования. Клостридии и бациллы.Примеры.

Основные поверхностные структуры бактериальной клетки — капсула, жгутики и микроворсинки. Их наличие — относительно стабильный признак, используемый для идентификации бактерий.

Капсула бактерий

Клеточную оболочку многих бактерий окружает слой аморфного, сильно обводнённого вещества. Этот покров выполняет важные функции: делает оболочку клетки (состоящей из клеточной стенки и ЦПМ) более плотной и прочной, предохраняет бактерии от воздействия бактерицидных факторов, обеспечивает адгезию на различных субстратах, может содержать запасы питательных веществ.

Основную роль в организации капсул бактерий играет ЦПМ. Выделяют микрокапсулы (выявляемые только при электронной микроскопии в виде слоя мукополисахаридных микрофибрилл) и макрокапсулы (обнаруживают при световой микроскопии). У некоторых бактерий полимеры клеточной оболочки, выделяемые наружу, свободно располагаются вокруг неё, образуя слизистый слой.

Жгутик — спирально изогнутая полая нить, образованная субъединицами флагеллина. У разных бактерий толщина жгутиков варьирует от 12 до 18 нм, что составляет не более 1/10 диаметра жгутиков водорослей и простейших.

Бактериальные жгутики совершают поступательные и вращательные движения, проталкивая бактерии через среду подобно корабельному винту. Они также могут изменять направление вращения и тянуть клетку подобно пропеллеру. Скорость обратного движения в четыре раза меньше скорости поступательного движения. Некоторые перитрихи могут перемещаться по поверхности агара, то есть плавающие бактерии способны к передвижению по поверхности твёрдых сред

Помимо жгутиков, поверхность многих бактерий покрыта цитоплазматическими выростами — микроворсинками. Обычно это волоски (числом от 10 до нескольких тысяч) толщиной 3-25 нм и длиной до 12 мкм. Микроворсинки встречают как у подвижных, так и у неподвижных бактерий. Эти выросты способствуют увеличению площади поверхности бактериальной клетки, что дает ей дополнительные преимущества в утилизации питательных веществ из окружающей среды. Известны специализированные микроворсинки — фимбрии и пили.

Фимбрии бактерий [от лат. fimbria, бахрома]. Многие грамотрицательные бактерии имеют длинные и тонкие микроворсинки, пронизывающие клеточную стенку. Образующие их белки формируют спиралевидную нить. Основная функция фимбрии — прикрепление бактерий к субстратам (например, к поверхности слизистых оболочек), что делает их важным фактором колонизации и патогенности.

F-пили бактерий [от англ. fertility, плодовитость, + лат. pilus, волосок], или «секс-пили», — жёсткие цилиндрические образования, участвующие в конъюгации бактерий. Большинство F-пилей образует специфический белок — пилин. Образование пилей кодируют плазмиды. Их идентифицируют с помощью донорспецифических бактериофагов, адсорбирующихся на пилях и лизирующих клетки.

Микроскопические методы исследования основаны на обнаружении и исследовании возбудителя в биологическом материале. Используют светооптическую и электронную микроскопию. Светооптическая микроскопия позволяет изучать объекты размером более 0,2 мкм (бактерии, простейшие, грибы и др.), электронная микроскопия — более мелкие объекты (вирусы, отдельные структуры микроорганизмов).

Микроскопический метод широко применяют в диагностике инфекционных болезней бактериальной этиологии, паразитарных и (реже) вирусных заболеваний.

Материалом для микроскопического исследования могут служить кровь, костный мозг, СМЖ, пунктаты лимфатических узлов, фекалии, дуоденальное содержимое и жёлчь, моча, мокрота, отделяемое мочеполовых путей, биоптаты тканей, мазки со слизистых оболочек (ротовой полости, нёбных миндалин, носа, влагалища и др.).

Для световой микроскопии и основанных на ней других М.м.и. определяющее значение помимо разрешающей способности Микроскопаимеет характер и направленность светового луча, а также особенности изучаемого объекта, который может быть прозрачным и непрозрачным. В зависимости от свойств объекта изменяются физические свойства света — его цвет и яркость, связанные с длиной и амплитудой волны, фаза, плоскость и направление распространения волны. На использовании этих свойств света и строятся различные М.м.и. Для световой микроскопии биологические объекты обычно окрашивают с целью выявления тех или иных их свойств. При этом ткани должны быть фиксированы, т.к. окраска выявляет определенные структуры только убитых клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает ее структуры. Однако в световом микроскопе можно изучать и живые биологические объекты с помощью метода витальной микроскопии. В этом случае применяют темнопольный конденсор, который встраивают в микроскоп.

Для исследования живых и неокрашенных биологических объектов используют также фазово-контрастную микроскопию. Она основана на дифракции луча света в зависимости от особенностей объекта излучения. Разновидностью фазово-контрастной микроскопии является амплитудно-контрастная, или аноптральная, микроскопия, при которой применяют объектив со специальными пластинками, изменяющими только яркость и цвет фонового света. Фазово-контрастная микроскопия находит применение в микробиологии и паразитологии при исследовании микроорганизмов, простейших, клеток растений и животных; в гематологии для подсчета и определения дифференцировки клеток костного мозга и крови; а также при изучении клеток культуры тканей и т.п.

Интерференционная микроскопия решает те же задачи, что и фазово-контрастная. Но если последняя позволяет наблюдать лишь контуры объектов исследования, то с помощью интерференционной микроскопии можно изучать детали прозрачного объекта и проводить их количественный анализ. На основании данных интерференционной микроскопии можно косвенно судить о проницаемости мембран, активности ферментов, клеточном метаболизме объектов исследования.

Поляризационная микроскопия позволяет изучать объекты исследования в свете, образованном двумя лучами, поляризованными во взаимноперпендикулярных плоскостях, т.е. в поляризованном свете.

Споры бактерий — тельца круглой или овальной формы, которые образуются внутри некоторых бактерий в определенные стадии их существования или при ухудшении условий окружающей среды. Размер, форма и расположение спор в клетке — признак относительно постоянный, характерный для некоторых видов бактерий. Споры бактерий устойчивы к различным физическим и химическим воздействиям, не окрашиваются обычными анилиновыми красителями и сохраняются в течение нескольких лет, не утрачивая свойства прорастать в вегетативную форму, что имеет значение в эпидемиологии ряда заболеваний. Споры бактерий погибают после прогревания в автоклаве при t° 120° в течение 30 минут или при обработке сухим жаром при t° 160— 180° в течение часа.

Процесс споруляции (спорообразования) начинается сразу после возникновения дефицита питательных веществ и продолжается приблизительно 8 ч. Никаких внешних источников питания или энергии при этом не требуется. Споруляцию стимулирует внесение в среду глюкозы, фосфора и NH4; угнетает внесение пептона лактозы, NaCl, CaCl2 (у бактерий рода Bacillus— DL-аланина).

Споруляция контролируется особыми генами. Их число вариабельно у различных видов и может достигать 70. Для спорообразования важна индукция гена spoO. Его транскрипция запускает последовательную транскрипцию всех остальных необходимых генов (оперонов). Детали спорообразованияслужат видовыми признаками, но его принципиальные закономерности одинаковы для всех бактерий.

Подготовительная стадия споруляции сопровождается прекращением деления и увеличением количества липидных включений.

Стадия предспоры споруляции обычно начинается бурно. В клетке появляется эллиптическая оболочка, окружающая участок цитоплазмы с изменёнными плотностью и тинкториальными свойствами. Подобное образование обозначают терминами «предспора», или «примордиальная спора».

Третья стадия споруляции включает появление оболочки (обычно в течение 10 мин после образования предспоры) и ещё большее увеличение коэффициента светопреломления.

Стадия созревания споры сопровождается её уплотнением и снижением метаболической активности клетки.

Род Clostridium семейства Васillасеае отдела Firmicutes образуют подвижные (перитрихи) и (реже) неподвижные палочки. Отличительная особенность клостридии — способность образовывать овальные или круглые эндоспоры. Споры могут располагаться центрально, субтерминально или терминально. У клостридии, обитающих в почве, споры располагаются центрально, придавая клеткам веретенообразную форму, что определило название рода [от греч. kloster, веретено].

Клостридии хемоорганотрофы; одни виды проявляют сахаролитическую, другие — протеолитическую активность (возможно сочетание этих свойств либо их полное отсутствие). Наиболее характерные признаки клостридии — способность вызывать масляно-кислое брожение и анаэробный распад углеводов с образованием масляной кислоты и газов (С02, водород, иногда метан). Большинство видов — строгие анаэробы, но также известны и аэротолерантные виды. Клостридии обитают в почве, на дне пресных и солёных водоёмов, в кишечнике человека и животных. Некоторые виды патогенны для человека и животных, а некоторые нашли применение в промышленном производстве органических кислот и спиртов.

Примеры клостридии: C. acetobutylicum, C. aerotolerans, C. beijerinckii, C. bifermentans, C. botulinum, C. butyricum, C. cadaveris, C. chauvoei, C. clostridioforme

Бациллы выделяют из почвы, пресной и морской воды, а также с растений. Они могут расти в интервале температур от 5 до 75 °С, а их выживанию в экстремальных условиях способствует спорообразование. Госпитальные поражения (пневмонии, септицемии, эндокардиты, менингиты и др.) вызывают В. subtilis, В. cereus и В. megaterium (рис. 4, см. цветную вклейку), В. alvei, В. laterosporus, В. pumilus, В. thuringiensis и В. sphaericus. Поражения регистрируют сравнительно редко, а их развитию у человека способствуют широкая распространённость бактерий и высокая устойчивость их спор к различным воздействиям.

Отличительные особенности бацилл:
• представлены крупными прямыми палочками, положительно окрашивающимися по Граму,
• способны образовывать споры в аэробных условиях,
• единственным патогенным для человека видом выступает Bacillus anthracis (палочка сибирской язвы),
• некоторые условно-патогенные виды также способны вызывать пищевые интоксикации и госпитальные инфекции.

Примеры бацилл: Bacillus anthracis — возбудитель сибирской язвы, Bacillus cereus — возбудитель пищевых токсикоинфекций человека.

Наши рекомендации