Взаимодействие и множественное действие генов.
Аллельные гены — парные, определяющие развитие взаимоисключающих признаков (высокий и низкий рост, курчавые и гладкие волосы, голубые и черные глаза у человека).
1. Взаимодействие неаллельных генов: развитие какого-либо признака под контролем нескольких генов — основа новообразования при скрещивании. Пример: появление серых кроликов (АаВЬ) при скрещивании черного (ААЬЪ) и белого (ааВВ). Причина новообразования: за окраску шерсти отвечают гены Аа (А — черная шерсть, а — белая), за распределение пигмента по длине волос — гены ВЬ (В — пигмент скапливается у корня волоса, Ъ — пигмент равномерно распределяется по длине волоса).
2. Множественное действие генов — влияние одного гена на формирование ряда признаков. Пример: ген, отвечающий за образование красного пигмента в цветке, способствует его появлению в стебле, листьях, вызывает удлинение стебля, увеличение массы семян.
28. Генотип — совокупность генов данного организма, которая, в отличие от понятий генома и генофонда, характеризует особь, а не вид.
Фенотип — совокупность характеристик, присущих индивиду на определённой стадии развития. У диплоидных организмов в фенотипе проявляются доминантные гены.
Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:
1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).
2. Генотип не всегда соответствует одному и тому же фенотипу. Некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов по типу комплементарности.
Изменчивость — способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.
Различают две основные формы изменчивости: наследственная и ненаследственная. Наследственная, или генотипическая, изменчивость — изменения признаков организма, обусловленные изменением генотипа. Она, в свою очередь, подразделяется на комбинативную и мутационную. Комбинативная изменчивость возникает вследствие перекомбинации наследственного материала (генов и хромосом) во время гаметогенеза и полового размножения. Мутационная изменчивость возникает в результате изменения структуры наследственного материала. Ненаследственная, или фенотипическая, или модификационная, изменчивость — изменения признаков организма, не обусловленные изменением генотипа.
Норма реакции — способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида.
29. Модификациями называют изменения фенотипа, вызванные влиянием окружающей среды и не связанные с изменениями генотипа. Модификационной изменчивости подвержены все признаки. Возникновение модификаций связано с тем, что такие важнейшие факторы среды, как свет, тепло, влага, химический состав и структура почвы, воздух, воздействуют на активность ферментов и в известной мере изменяют ход биохимических реакций, протекающих в развивающемся организме. Адаптивные модификации дают возможность организму выжить и оставить потомство в изменившихся условиях среды.
Наследственную изменчивость подразделяют на комбинативную и мутационную. Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей. В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Мутационной называется изменчивость самого генотипа. Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
30. Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей. В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:
• Независимое расхождение гомологичных хромосом в первом мейотическом делении. (Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.)
• Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
• Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом.
Биологическое значение: обеспечивает бесконечное разнообразие особей внутри вида и неповторимость каждой из них.
Половой процесс: рекомбинация перераспределение генетического материала родителей, в результате чего у потомков появляются новые сочетания генов, определяющие новые сочетания признаков. Рекомбинация – основа комбинативной изменчивости. У эукариотических организмов, размножающихся половым путём, рекомбинация происходит в мейозе при независимом расхождении хромосом и при обмене гомологичными участками между гомологичными хромосомами (кроссинговере). Рекомбинации бывают и в половых, и, гораздо реже, в соматических клетках. У прокариот (бактерий) и у вирусов существуют специальные механизмы обмена генами. Таким образом, рекомбинации – универсальный способ повышения генотипической изменчивости у всех организмов, создающий материал для естественного отбора.
Мутационной называется изменчивость самого генотипа. Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
Генные мутации — изменения структуры генов. Поскольку ген представляет собой участок молекулы ДНК, то генная мутация представляет собой изменения в нуклеотидном составе этого участка. Генные мутации могут происходить в результате: 1) замены одного или нескольких нуклеотидов на другие; 2) вставки нуклеотидов; 3) потери нуклеотидов; 4) удвоения нуклеотидов; 5) изменения порядка чередования нуклеотидов. Эти мутации приводят к изменению аминокислотного состава полипептидной цепи и, следовательно, к изменению функциональной активности белковой молекулы.
Хромосомные мутации - изменения структуры хромосом. Перестройки могут осуществляться как в пределах одной хромосомы — внутрихромосомные мутации, так и между хромосомами — межхромосомные мутации.
Геномной мутацией называется изменение числа хромосом. Геномные мутации возникают в результате нарушения нормального хода митоза или мейоза.
Свойства мутаций: в настоящее время считается, что многие мутации не оказывают существенного влияния на жизнеспособность особей; такие мутации называются нейтральными. Нейтральность мутаций часто обусловлена тем, что большинство мутантных аллелей рецессивно по отношению к исходному аллелю. Однако существуют мутации, приводящие к гибели организма (летальные) или заметно снижающие его жизнеспособность (полулетальные). В определенных условиях мутации могут повышать жизнеспособность организмов (как в примере с серповидноклеточной анемией).
По способности передаваться при половом размножении различают соматические и генеративные мутации. Соматические мутации не затрагивают половые клетки и не передаются потомкам. В результате соматических мутаций возникают генетические мозаики. Генеративные мутации происходят в половых клетках и могут передаваться потомкам. При участии мутантных половых клеток образуются полностью мутантные организмы. Мутантный аллель может возвращаться в исходное состояние. Тогда первоначальная мутация называется прямой (например, переход А → а), а другая – обратной мутацией, или реверсией (например, обратный переход а → А).
Биологическое значение мутаций: прежде всего мутации оказывают влияние на эволюцию. Именно постоянное наличие мутаций имело решающее значение для эволюционного развития видов. В меняющихся условиях окружающей среды возникновение мутации, давшей начало организмам, лучше приспособленным к данным условиям, было одновременно шагом вперед.
Получение мутации: обычно мутагены подразделяют на три группы. Для искусственного получения мутаций используются физические и химические мутагены.
Ø Физические: рентгеновские лучи, гамма лучи, ультрафиолетовое излучение, высокие и низкие температуры и др.
Ø Химические: соли тяжелых металлов, алкалоиды, чужеродные ДНК и РНК, аналоги азотистых оснований нуклеиновых кислот и др.
Ø Биологические: вирусы, бактерии.
Генеративные мутации возникают в половых клетках, не влияют на признаки данного организма, проявляются только в следующем поколении.
Соматические мутации возникают в соматических клетках, проявляются у данного организма и не передаются потомству при половом размножении. Сохранить соматические мутации можно только путем бесполого размножения.