Мышечная ткань. Работа мышц. 1 страница

Подходы анатомии. История

Подходы применяемые в исследованиях по анатомии: 1 – систематический (описательный метод) 2 – функциональный (учитывает функции органов) 3 – индивидуальный (учитываются индивидуальные особенности организма) 4 – анатомический (каждый орган по отдельности и организм в целом) 5 – причинный.

Методы анатомии: макроскопические (изучение органов или систем, видимые глазом) и микроскопические (изучение внутреннего строения органов при помощи микроскопов).

Методы анатомии: наблюдение и осмотр организма; вскрытие; заморозка и распил; наливки; рентгеновский; эндоскопический; экспериментальный.

Номенклатура: 1955 (PNA).

Линии и плоскости. Для определения положения органов используют три взаимно перпендикулярные плоскости: сагиттальную (от лат. sagitta — стрела), вертикально рассекающую тело спереди назад; фронтальную (от лат. frons — лоб) плоскость, перпендикулярную к первой, вертикальную (ориентированную справа налево) соответственно плоскости лба; и горизонтальную (плоскость, перпен­дикулярную первым двум). В теле человека условно можно прове­сти множество таких плоскостей. Сагиттальную плоскость, которая делит тело пополам на пра­вую и левую половины, называ­ют срединной. Для обозначения расположения органов по отно­шению к горизонтальной плос­кости применяют термины верх­ний (краниальный — от лат. cranium — череп), нижний (каудальный — от лат. cauda — хвост); по отношению к фрон­тальной плоскости — передний (вентральный — от лат. ven­ter — живот), задний (дорсаль­ный — от лат. dorsum — спи­на). Выделяют также понятия боковой (латеральный), распо­ложенный на удалении от сре­динной сагиттальной плоско­сти, и средний (медиальный), лежащий ближе к срединной плоскости. Для обозначения ча­стей конечностей применяются термины — проксимальный (рас­положенный ближе к началу конечности) и дистальный, на­ходящийся дальше от тулови­ща.

Вертикальных ли­ний. Это — передняя и задняя срединные, правая и левая грудинные, проведенные вдоль со­ответствующих краев грудины; среднеключичные, проведенные через середины ключиц; подмышечные: передние, задние, средние, проведенные через соответствующие края и середину подмышеч­ной ямки; лопаточные — проведенные через нижние углы лопаток.

3 Понятие о тканях, стр-функ единицах, органах, системах органов, аппаратах органов

В процессе анатомического изучения человека его структуры условно подразделяются на клетки, ткани, органы, системы ор­ганов, которые и формируют организмы. Орга­низм един, он может существовать лишь благодаря своей целост­ности. Основной структурной единицей строения живого является клетка.

Клетки и их производные образуют ткани, из которых сфор­мированы органы, образующие системы органов. И, наконец, системы интегрируются в целостный организм. Целостность ор­ганизма обеспечивается благодаря единой нейро-гуморально-гормональной регуляции его функций. И. П. Павлов доказал ведущую роль нерв­ной системы в интеграции организма и осуществлении его связи с внешней средой.

Клетки входят в состав тканей. Ткань — это исторически сложившаяся общность клеток и межклеточного вещества, объ­единенных единством происхождения, строения и функции. В ор­ганизме человека выделяют 4 типа тканей: эпителиальную, соеди­нительную, мышечную и нервную.

Орган (от греч. organon — орудие, инструмент) отличается свойственной лишь ему формой и строением, приспособленным к выполнению определенной функции. Органы построены из тканей. Каждый орган содержит все виды тканей. Одна из тканей является ос­новной, «рабочей», выполняющей главную функцию органа.

Органы анатомически и функционально объединяются в сис­темы органов. Система — это ряд органов, имеющих общий план строения, единство происхождения и выполняющих одну боль­шую функцию (например, пищеварения, дыхания). В организме человека выделяют следующие системы органов: пищеварения (пищеварительную), дыхания (дыхательную), мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную. Не­которые органы объединяются по функциональному принципу в аппараты: они зачастую имеют различное строение и происхож­дение, могут быть не связаны анатомически, но их объединяет участие в выполнении общей функции (например, опорно-двига­тельный, эндокринный аппараты), либо эти органы различны по своим функциональным задачам, но связаны онтогенетически (например, мочеполовой аппарат).

4 Эпителиальная, мышечная, нервная ткани.

Ткань — это исторически сложившаяся общность клеток и межклеточного вещества, объ­единенных единством происхождения, строения и функции. В ор­ганизме человека выделяют 4 типа тканей: эпителиальную, соеди­нительную, мышечную и нервную.

Эпителиальная ткань покрывает поверхность тела, выстилает слизистые оболочки, отделяя организм от внешней среды, вы­полняет покровную и защитную функции, секреторная функция и обмен веществ, а также образует железы. Эпителий состоит из эпителиальных клеток, лежащих в виде пласта на базальной мембране. Он лишен кровеносных со­судов, его питание происходит за счет диффузии веществ из под­лежащей соединительной ткани. Выделяют эпителий многослой­ный: ороговевающий, неороговевающий и переходный и однослой­ный: простой столбчатый, простой кубический (плоский), простой сквамозный (мезотелий). Кожа покрыта ороговевающим многослойным (плоским) сквамозным эпителием. Слизис­тые оболочки, в зависимости от строения и функции, выстланы однослойным простым столбчатым (тонкая, толстая кишки, же­лудок, дыхательные пути — гортань, трахея, бронхи), неороговевающим многослойным (плоским) сквамозным эпителием (рото­вая полость, глотка, пищевод, конечный отдел прямой кишки). Слизистая оболочка мочевыводящих путей покрыта переходным эпителием. Серозные оболочки (брюшина, плевра) выстланы про­стым сквамозным (однослойным плоским) эпителием (мезотелием).

Мышечная ткань осуществляет функцию движения, способна сокращаться. Существуют две разновидности мышечной ткани: неисчерченная (гладкая) и исчерченная (скелетная и сердечная) — поперечно-полосатая. Неисчерченная (гладкая) мышечная ткань состоит из верете­нообразных клеток — миоцитов, длиной до 500 мкм, которые рас­полагаются в стенках кровеносных и лимфатических сосудов, внутренних органов. Миоцит имеет одно удлиненное ядро, в цито­плазме множество сократительных органелл — миофиламентов и утолщений — плотных телец, часть из них прикрепляется к плаз­матической мембране. Неисчерченная (гладкая) мышечная ткань иннервируется вегетативной нервной системой. Исчерченная (поперечно-полосатая) мышечная ткань образует скелетные мышцы, приводящие в движение костные рычаги, а также входит в состав языка, глотки, верхнего отдела пищевода, формирует наружный сфинктер заднего прохода. Исчерченная ске­летная мышечная ткань построена из многоядерных поперечно­полосатых мышечных волокон сложного строения, в которых че Мышечная ткань. Работа мышц. 1 страница - student2.ru Мышечная ткань. Работа мышц. 1 страница - student2.ru Мышечная ткань. Работа мышц. 1 страница - student2.ru Мышечная ткань. Работа мышц. 1 страница - student2.ru редуются более темные и более светлые участки (диски), имеющие различные светопреломляющие свойства. Скелетные мышцы иннервируются спинно-мозговыми и черепными нервами. Исчерченная сердечная мышечная ткань, которая по своему строению и функции отличается от скелетных мышц, состоит из сердечных миоцитов (кардиомиоцитов), образующих соединяю­щиеся друг с другом комплексы. По своему микроско­пическому строению сердечная мышечная ткань похожа на скелет­ную (поперечно-полосатая исчерченность), однако сокращения сердечной мышцы не подконтрольны сознанию человека.

Нервная ткань образует центральную нервную систему (голов­ной и спинной мозг) и периферическую — нервы с их концевыми приборами, нервные узлы (ганглии). Нервная ткань состоит из нервных клеток — нейронов (нейроцитов), отличаю­щихся особым строением и функцией, и нейроглии, которая вы­полняет опорную, трофическую, защитную и разграничительную функции. Нервная клетка (нейрон) имеет тело и отростки раз­личной длины, является морфофункциональной единицей нервной системы. Длинный отросток, по которому нервный импульс дви­жется от тела нервной клетки к концевым аппаратам, к рабочим органам (мышце, железе) или к другой нервной клетке, назы­вается аксоном (нейритом). Другие, более короткие отростки (один или несколько), обычно древовидно ветвящиеся, по которым нервный импульс направляется к телу клетки, называются дендритами. Их окончания получают нервный импульс от другой нерв­ной клетки или воспринимают различного вида внешние воздей­ствия. Нервная ткань обеспечивает анализ и синтез сигналов (им­пульсов), поступающих в мозг. Она устанавливает взаимосвязь организма с внешней средой и участвует в координации функции внутри организма, обеспечивая его целостность (вместе с гумо­ральной системой — кровью, лимфой).

5 Соединительная ткань.

Соединительная ткань представляет обширную группу, включающую собственно соединительные ткани (рыхлая волокнистая и плотная волокнистая неоформленная и оформленная), ткани со специальными свойствами (ретикулярная, жировая), твердые ске­летные (костная и хрящевая) и жидкие (кровь и лимфа). Со­единительные ткани выполняют опорную, защитную (механиче­скую) функции (плотная волокнистая соединительная ткань, хрящ, кость), другие — трофическую (питательную), защитную (фагоцитоз и выработка антител) функции (рыхлая волокнистая и ретикулярная соединительная ткань, кровь и лимфа). В отличие от других тканей соединительная сформирована из многочис­ленных клеток и межклеточного вещества (состоящего из гликозаминогликанов, часть которых, связываясь с белками, образует протеогликаны), в ко­тором находятся раз­личные волокна (коллагеновые, эластиче­ские, ретикулярные). Межклеточное ве­щество кости твер­дое, крови и лимфы жидкое.

В рыхлой волок­нистой соединитель­ной ткани находится значитель­ное количество раз­личных клеточных элементов и волокна, беспорядочно ориен­тированные в основ­ном веществе. Распо­лагается эта ткань преимущественно по ходу кровеносных и лимфатических сосу­дов, нервов, покры­вает мышцы. Клеточ­ный состав рыхлой соединительной ткани представлен фибробластами, фиброцитами, плазмоцитами, тканевыми базофилами, липоцитами, пигментными клетками, эндотелиоцитами и перицитами сосудов, а также макрофагоцитами. Фибробласты — основная разновидность клеток соединительной ткани — крупные клетки с хорошо выраженной зернистой эндоплазматической сетью и комплексом Гольджи. Фибробласты синтезируют и выде­ляют компоненты межклеточного вещества. Заканчивая свой цикл развития, фибробласты превращаются в фиброциты — отростчатые клетки, содержащие множество вакуолей. Фиброциты не син­тезируют или крайне слабо синтезируют основное вещество соеди­нительной ткани. Плазмоциты, или плазматические клетки, — клетки иммунной системы, участвуют в защитных реакциях орга­низма, синтезируя антитела (белки иммуноглобулины). Они бога­ты элементами зернистой эндоплазматической сети. Плазматиче­ские клетки образуются из В-лимфоцитов. Тканевые базофилы (тучные клетки) — большие клетки, богатые крупными гранулами, содержащими гепарин и гистамин. Макрофагоциты — крупные клетки, имеющие большое коли­чество псевдоподий и выростов цитоплазмы, покрытых плазма­тической мембраной, богатые лизосомами, и фагосомами. Макрофагоциты происходят из моноцитов. Различают оседлые (в орга­нах кроветворения и печени) и кочующие макрофагоциты (в со­единительной ткани, серозных полостях, альвеолярные и др.). Липоциты — жировые клетки округлой формы, которые накап­ливают жир. Последний занимает практически всю клетку, а цито­плазма и уплощенное ядро лежат по периферии, окружая каплю жира. Скопления липоцитов образуют жировую ткань. Пигмент­ные клетки содержат множество зерен меланиная.

Плотная волокнистая соединительная ткань может быть не­оформленной и оформленной. В неоформленной - многочисленные во­локна густо переплетаются, а между ними содержится небольшое количество клеточных элементов (например, сетчатый слой кожи). Оформленная плотная соединительная ткань отличается упорядо­ченным расположением пучков волокон, определенным их направ­лением (связки, сухожилия, фиброзные мембраны).

Разновидностью соединительной ткани, состоящей из ретику­лярных клеток и ретикулярных волокон, является ретикулярная ткань. Она образует остов кроветворных и иммунных органов (костный мозг, вилочковая железа, селезенка, лимфатические уз­лы, миндалины и др.), в петлях которого располагаются разви­вающиеся клетки крови или иммунной (лимфоидной) системы.

Хрящевая и костная ткани также являются разновидностями соединительной. Хрящевая ткань состоит из хрящевых клеток хондробластов и хондроцитов и основного (хрящевого межкле­точного) вещества, находящегося в состоянии геля, в котором имеются соединительно-тканные волокна. Различают три типа хрящевой ткани: 1- гиалиновый хрящ, из которого построены сустав­ные, реберные, эпифизарные хрящи и ряд хрящей гортани; 2- волок­нистый хрящ, в основном хрящевом веществе которого содержится большое количество коллагеновых волокон, при­дающих хрящу повы­шенную прочность. Из волокнистого хряща по­строены фиброзные кольца межпозвоноч­ных дисков, суставные диски и мениски, этим хрящом покрыты су­ставные поверхности в височно - нижнечелюст­ном и грудинно-ключичном суставах. 3- Элас­тический хрящ в хря­щевом основном веще­стве содержит много­численные сложно пе­реплетающиеся эласти­ческие волокна. Он жел­товатого цвета, отлича­ется упругостью. Из эластического хряща по­строены клиновидные и рожковидные хрящи гор­тани, голосовой отрос­ток черпаловидных хря­щей, надгортанник, хрящ ушной раковины, хря­щевая часть слуховой трубы и наружного слухового прохода. В от­личие от гиалинового эластический хрящ не окостеневает. Костная ткань, отличающаяся особыми механическими свой­ствами, состоит из костных клеток, замурованных в костное ос­новное вещество, содержащее коллагеновые волокна и пропитан­ное неорганическими соединениями.

Кровь и лимфа выполняют трофическую, транспортную и за­щитную функции. Кровь и лимфа имеют жидкое межклеточное вещество сложного состава (плазму) и взвешенные в ней клетки. В крови содержатся безъядерные клетки эритроциты (4,0—5,0- 1012/л крови), лейкоциты (4,0—6,0- 109/л крови), среди которых выделяют незернистые, или агранулоциты (лимфо­циты и моноциты), и зернистые, или гранулоциты (нейтрофильные, ацидофильные и базофильные). В крови имеются также кро­вяные пластинки (тромбоциты), число которых составляет 180,0—320,0- 109/л. Эритроциты, или красные кровяные тельца, имеют форму двоя­ковогнутых дисков диаметром от 7 до 10 мкм, они содержат гемо­глобин и участвуют в переносе кислорода и углекислого газа, а также ряда биологически активных веществ. Гранулоциты имеют шаровидную форму и содержат в цитоплазме гранулы. Грануло­циты выполняют защитную функцию благодаря способности к фа­гоцитозу. В нейтрофильных гранулоцитах различают гранулы двух типов: более крупные азурофильные, являющиеся лизосомами, и мелкие специфические нейтрофильные (преобладают), богатые бактерицидным веществом и щелочной фосфатазой. Диаметр нейтрофилов 7—8 мкм; они подвижны и осуществляют фагоцитоз. Цитоплазма эозинофильных гранулоцитов богата специфическими гранулами, которые являются лизосомами. Диаметр эозинофилов 9—10 мкм, они способны к фагоцитозу, однако их основная функция — участие в аллергических реакциях. Крупные гранулы базофилъных гранулоцитов содержат гепарин, гистамин и серото-нин. Диаметр базофилов 9—10 мкм, они также способны к фаго­цитозу и участвуют в регуляции сосудистой проницаемости, свер­тываемости крови, а также в аллергических реакциях. Лимфоциты являются основными участниками иммунологиче­ских реакций и осуществляют клеточные (Т-лимфоциты) и гумо­ральные (В-лимфоциты) защитные реакции (см. «Иммунная си­стема»). Диаметр лимфоцитов варьирует от 7 до 12 мкм. В зави­симости от этого выделяют малые (преобладают), средние и боль­шие лимфоциты. Малые лимфоциты бедны органеллами, функцио­нально они подразделяются на Т- и В-лимфоциты. Последние являются источником плазматических клеток, синтезирующих антитела. Моноциты — крупные округлые клетки диаметром 12—15 мкм, в их цитоплазме имеются лизосомы. Моноциты являются источ­ником всех макрофагов. Тромбоциты, или кровяные пластинки, — безъядерные клетки неправильной формы, размеры их не превышают 2—3 мкм. Тром­боциты богаты лизосомами и содержат небольшое число гранул, в которых имеется серотонин. Тромбоциты участвуют в сверты­вании крови и выделяют тромбоцитарный фактор роста. Клеточный состав лимфы в отличие от крови представлен пре­имущественно лимфоцитами, число которых в периферической (предузловой) лимфе значительно меньше, чем в центральной (послеузловой). В лимфе отсутствуют эритроциты.

6 Общее о скелете Кости

Мышечная ткань. Работа мышц. 1 страница - student2.ru Мышечная ткань. Работа мышц. 1 страница - student2.ru УЧЕНИЕ О КОСТЯХ (ОСТЕОЛОГИЯ)

Одним из важнейших свойств живого организма является пере­движение в пространстве. Эту функцию у млекопитающих (и че­ловека) выполняет опорно-двигательный аппарат, состоящий из двух частей: пассивной и активной. К первой относятся кости, соединяющиеся между собой различным образом, ко второй — мышцы.

Скелет (от греч. skeleton — высохший, высушенный) представ­ляет собой комплекс костей, выполняющих опорную, защитную, локомоторную функции. В состав скелета входит более 200 костей, из них 33—34 непарные. Скелет условно подразделяют на две части: осевой и добавочный. К осевому скелету относится позво­ночный столб (26 костей), череп (29 костей), грудная клетка (25 костей); к добавочному — кости верхних (64) и нижних (62) конечностей (рис. 15). Кости скелета являются рычагами, приво­димыми в движение мышцами. В результате этого части тела из­меняют положение по отношению друг к другу и передвигают тело в пространстве. К костям прикрепляются связки, мышцы, сухо­жилия, фасции. Скелет образует вместилища для жизненно важ­ных органов, защищая их от внешних воздействий: в полости че­репа расположен головной мозг, в позвоночном канале — спинной, в грудной клетке — сердце и крупные сосуды, легкие, пищевод и др., в полости таза — мочеполовые органы. Кости участвуют в минеральном обмене, они являются депо кальция, фосфора и т. д. Живая кость содержит витамины A, D, С и др. Кости образованы костной тканью, которая относится к соеди­нительной, состоит из клеток и плотного межклеточного вещества, богатого коллагеном и минеральными компонентами. Они-то и определяют физико-химические свойства костной ткани (твер­дость и упругость). В костной ткани содержится около 33 % орга­нических веществ (коллаген, гликопротеиды и др.) и 67 % неор­ганических соединений. Это в основном кристаллы гидрооксиапа-тита. Сопротивление свежей кости на разрыв такое же, как меди, и в 9 раз больше, чем свинца. Кость выдерживает сжатие 10 кг/мм (аналогично чугуну). А предел прочности, например, ребер на излом 110 кг/см2. Кость (os) как орган снаружи, кроме сочленен­ных поверхностей, покры­та надкостницей представляющей собой прочную соединительно-тканную пластин­ку, богатую кровеносными и лимфатическими сосудами, нервами. Надкостница прочно сращена с костью при помощи прободающих волокон, проникающих в глубь кости. Наружный слой надкостни­цы — волокнистый, внутренний — остеогенный (костеобразующий), прилежит непосредственно к костной ткани. В нем располо­жены тонкие веретенообразные «покоящиеся» остеогенные клет­ки, за счет которых происходит развитие, рост в толщину и реге­нерация костей после повреждения. Различают два основных типа костной ткани — ретикулофиброзную (грубоволокнистую) и пластинчатую. Первая развивается непосредственно из мезенхимы, что характерно для покровных костей черепа. Одновременно с дифференцировкой клеток в остеоциты образуются межклеточное вещество и коллагеновые волокна. Располагающееся между волокнами и клетками основное вещество уплотняется, формируются костные балки (перекладины). Клетки на поверхности образующейся кости превращаются в остеобласты. Вторая, пластинчатая, наиболее распространена в организме, она образуется при перестройке грубоволокнистой костной ткани и врастании в кость сосудов. Представлена она костными пластин­ками толщиной от 4 до 15 мкм, которые состоят из остеоцитов и тонковолокнистого костного межклеточного вещества. Соединительно-тканные волокна в тол­ще каждой пластинки лежат параллельно друг другу и ори­ентированы в определенном на­правлении. В зависимости от располо­жения костных пластинок раз­личают плотное (компактное) и губчатое костное вещество (трабекулярная кость). В компактном веществе костные пластинки располагаются в определенном порядке, образуя сложные системы — остеоны. Остеон — структурная единица, кости. Он состоит из 5—20 цилиндрических пластинок, вставленных одна в другую. В центре каждого остеона проходит центральный канал (Гаверсов) (рис. 19). Диаметр остеона 0,3—0,4 мм. Между остеонами залегают интер-стициальные {вставочные, промежуточные) пластинки, кнаружи от них находятся наружные окружающие {генеральные) пластинки, кнутри — внутренние окружающие {генеральные) пластинки. Губчатое костное вещество состоит из тонких костных пласти­нок и перекладин (трабекул), перекрещивающихся между собой и образующих множество ячеек. Направление перекладин совпа­дает с кривыми сжатия и растяжения, образуя сводчатые конст­рукции . Такое расположение костных трабекул под углом друг к другу обеспечивает равномер­ную передачу давления или тяги мышц на кость. Трубчатое и арочное строение кости обеспечивает наибольшую прочность при меньшей массе и минимальной затрате кост­ного материала (П. Ф. Лесгафт). Кости отличаются друг от друга, при этом их форма и выполняемая функция взаимо­связаны и взаимообусловлены. В трубчатой кости различают ее удли­ненную среднюю часть — тело кости, или диафиз, обычно цилиндрической или близкой к трехгранной формы, и утолщенные кон­цы — эпифизы. На них располагаются сус­тавные поверхности, служащие для соедине­ния с соседними костями, покрытые сустав­ным хрящом. Участок кости, расположен­ный между диафизом и эпифизом, называ­ется метафизом. Среди трубчатых костей выделяют длинные трубчатые кости (напри­мер, плечевая, бедренная, кости предплечья и голени) и короткие (кости пясти, плюсны, фаланги пальцев). Диафизы построены из компактной, эпифизы — из губчатой кости, покрытой тонким слоем компактной. Губчатые кости состоят из губчатого вещества, покрытого тон­ким слоем компактного. К этим костям также следует отнести кости, развивающиеся в сухожилиях, — сесамовидные (например, гороховидная, надколенник). Губчатые кости имеют форму непра­вильного куба или многогранника. Такие кости располагаются в местах, где большая нагрузка сочетается с большой подвижно­стью. Плоские кости участвуют в образовании полостей, поясов конечностей, выполняют функцию защиты (кости крыши черепа, грудина). К их поверхности прикрепляются мышцы. Смешанные кости имеют сложную форму. Они состоят из не­скольких частей, имеющих различное строение, очертания и про­исхождение, например позвонки, кости основания черепа. Воздухоносные кости имеют в своём теле полость, выстланную слизистой оболочкой и заполненную воздухом. Например, некото­рые кости черепа: лобная, клиновидная, решетчатая, верхняя че­люсть. Внутри костей в костно-мозговых полостях и в ячейках губча­того вещества, выстланных эндостом (слоем плоских остеогенных клеток, лежащих на тонкой соединительно-тканной пластинке), находится костный мозг. Во внутриутробном периоде и у новорожденных во всех костных полостях находится красный костный мозг, он выполняет кроветворную и защитную функции. У взрослого человека красный костный мозг содержится только в ячейках губчатого вещества плоских костей (грудина, крылья подвздошных костей), в губчатых костях и эпифизах трубчатых костей. В диафизах в костно-мозговых полостях находится жел­тый костный мозг. Кость живого человека — динамическая структура, в которой происходит постоянный обмен веществ, анаболические и катаболические процессы, разрушение старых и созидание новых кост­ных трабекул и остеонов.

15Классификация соединений костей. Непрерывные соединения костей. Симфизы.

Классификация соединений костей:

Название - Фиброзные соединения (синдесмозы)

Виды – 1)Непрерывные соединения 1. Связки 2. Мембраны 3. Швы (Зубчатый, Чешуйчатый, Плоский) 2) Вколачивание (зубоальвеолярное соединение)

Название - Хрящевые соединения (синхондрозы)

Виды - 1. Временные 2. Постоянные

Название - Костные соединения (синостозы)

Полусуставы

Название - Суставы (синовиальное соединение)

Обязательные элементы – суставные поверхности, покрытые хрящом; суст сумка; суст полость содержащая синовиальную жидкость;

Вспомогательные элементы суставов – Связки (1 – внутрисуставные, 2 внесуставные (внекапсульные, капсульные)), Сут диск, Суст мениск, Суст губа;

Виды суставов – Простой и сложный (по количеству костей); Комплексный (наличие диска в суставе); Комбинированный ( два сустава функционирующих совместно); По кол-ву осей и форме суст поверхностей (Одноосные (цилиндрический, блоковидный), Двуосный (эллипсовидный, мыщелковый, седловидный), Многоосные (шаровидный, чашевидный, плоский));

Все соединения костей делятся на три большие группы: не­прерывные; полусуставы, или симфизы; и прерывные, или сино­виальные (суставы).

Непрерывные — это соединения костей с помощью различных видов соединительной ткани. Они делятся на фиброзные, хряще­вые и костные. К фиброзным относятся синдесмозы, швы и «вколачивание». Синдесмозы — это соединения костей с помощью связок и мембран (например, межкостные перепон­ки предплечья и го­лени, желтые связки, соединяющие дуги позвонков, связки, ук­репляющие суставы. Швы — соединения краев костей крыши черепа между собой тонкими прослойка­ми волокнистой сое­динительной ткани. Различают зубчатые (например, между те­менными костями), чешуйчатые (соеди­нения чешуи височ­ной кости с темен­ной) и плоские (меж­ду костями лицевого черепа) швы. Вкола­чивание (например, корень зуба как бы вколочен в зубную альвеолу) — это то­же разновидность фиброзного соединения. К хрящевым относятся соединения с помощью хрящей (например, синхондрозы мечевидного отростка или рукоятки с телом грудины, клиновидно-затылочный син­хондроз). Костные соединения появляются по мере окостенения синхондрозов или между отдельными костями основания черепа, костями, составляющими тазовую кость, и др.

Симфизы (от греч. symphysis — срастание) также представляют собой хрящевые соединения, когда в толще хряща имеется не­большая щелевидная полость, лишенная синовиальной оболочки. Согласно PNA к ним относятся межпозвоночные симфизы, лоб­ковый симфиз и симфиз рукоятки грудины.

16 Прерывные соединения костей (суставы). Строение сустава. Вспомогательные образования.

Суставы, или синовиальные соединения, представляют собой прерывные соединения костей, отличающиеся обязательным на­личием следующих анатомических элементов: суставных поверх­ностей костей, покрытых суставным хрящом, суставной капсулы, суставной полости, синовиальной жидкости. Суставные поверхности покрыты гиалиновым хрящом, лишь у височно-нижнечелюстного и грудинно-ключичного суставов он волокнистый. Толщина хряща колеблется в пределах от 0,2 до 6,0 мм и нахо­дится в прямой зависимости от функциональной нагрузки, ис­пытываемой суставом — чем больше нагрузка, тем толще хрящ. Суставной хрящ лишен кровеносных сосудов и надхрящницы. Он содержит 75—80% воды и 20—25% сухих веществ, из кото­рых около половины — это коллаген, соединенный с протеогликанами. Первый придает хрящу прочность, вторые — упругость. Через межклеточное вещество путем диффузии из синовиальной жидкости в хрящ свободно проникают вода, питательные вещества и т. д., оно непроницаемо для крупных молекул белка. Непосред­ственно к кости прилежит слой хряща, пропитанного солями кальция, над ним в основном веществе располагаются изогенные группы клеток — хондроцитов, залегающих в общей ячейке. Изогенные группы располагаются в виде колонок, перпендикулярных к поверхности хряща. Над слоем изогенных групп находится тонкий волокнистый слой, а над ним поверхно­стный слой. Со стороны суставной полости хрящ покрыт слоем аморфного вещества. Хондроциты секретируют гигант­ские молекулы, которые образуют межклеточное вещество.

Скольжение суставных поверхностей облегчается благодаря их увлажнению синовиальной жидкостью, продуцируемой синовиаль­ными клетками синовиальной мембраны, представляющей собой внутренний слой суставной капсулы. Синовиальная мембрана имеет множество ворсинок и складок, увеличивающих ее поверхность. Она обильно кровоснабжается, капилляры лежат непосред­ственно под слоем эпителиальных клеток, выстилающих оболочку. Эти клетки, секреторные синовиоциты, вырабатывают синовиаль­ную жидкость и ее главный компонент — гиалуроновую кислоту. Фагоцитарные синовиоциты обладают свойствами макрофагов.

Плотный наружный слой суставной капсулы — фиброзная ме­мбрана, прикрепляется к костям вблизи краев суставных поверх­ностей и переходит в надкостницу. Суставная капсула биологически герметична. Она, как правило, укрепляется внекапсульными, а в ряде случаев внутрикапсульными (в толще капсулы) связками. Связки не только укрепляют сустав, но и направляют, а также ограничивают движения. Они чрезвычайно прочны, так, например, прочность на разрыв подвздошно-бедренной связки достигает 350 кг, а длинной связки подошвы — 200 кг.

Наши рекомендации