РБ 3.Радионуклиды как источник радиационной опасности. Радиоактивность. Параметры радиоактивного распада. Количественная оценка радиоактивных веществ

Радиоактивность.

Параметры радиоактивного распада

Свойство самопроизвольного испускания некоторыми элементами ИИ называется радиоактивностью. Радиоактивные свойства впервые обнаружены А. Беккерелем у урана в 1896 г. После того как в 1934 г. Ирен и Фредерик Жолио-Кюри открыли искусственную радиоактивность,

Установлено, что источником ИИ, испускаемых радиоизотопами, служат внутриядерные перестройки, сопровождающиеся распадом атом­ного ядра и образованием нового химического элемента. Химические элементы, имеющие атомные ядра, подверженные самопроизвольному радиоактивному распаду, получили название радионуклидов.

Радиоактивный распад вызывает непрерывное уменьшение числа ато­мов радиоактивного элемента. Интервал времени, в течение которого распадается половина атомов радионуклида, называется периодом полу­распада.

Период полураспада является одной из основных характеристик радиоактивного вещества, поскольку его величина строго постоянна и не зависит от условий внешней среды. Если период полураспада измеряется секундами — часами, говорят о короткоживущих радионуклидах, если годами — о долгоживущих радионуклидах. Период полураспада основного природного изотопа урана — 238U — составляет 4,5 млрд лет. Медицин­ское значение скорости радиоактивного распада состоит в том, что при равном количестве радиоактивных веществ, поступивших в организм или загрязнивших кожные покровы, более длительное облучение (а следова­тельно, и более высокую дозу облучения) обусловит то из них, которое содержит радионуклид с большим периодом полураспада.

 
  РБ 3.Радионуклиды как источник радиационной опасности. Радиоактивность. Параметры радиоактивного распада. Количественная оценка радиоактивных веществ - student2.ru

По характеру испускаемых ИИ радионуклиды делят на а- и В-излуча­тели. Наряду с этими корпускулами, некоторые радионуклиды излучают также у-кванты. Характер излучения весьма важен для обнаружения ра­дионуклидов во внешней среде и в организме. у-лучи легко проникают наружу из толщи тел, содержащих радиоактивные вещества. Поэтому на­личие у-составляющей ИИ радионуклидов способствует их выявлению и измерению их количества.

Количество радиоактивных веществ. Радиометрия

Выражать количество радиоактивных веществ в традиционных единицах (массы, веса или объема) неудобно из-за незначительности этих величин для биологически значимых количеств радионуклидов, а также из-за того, что последние, как правило, находятся в смеси с нерадиоактивными веществами и друг с другом. Поэтому критерием оценки количества ра­диоактивных веществ служит их радиоактивность (активность), т. е. спо­собность к испусканию ИИ. В системе СИ за единицу радиоактивности принят 1 распад в секунду (беккерель, Бк), а традиционной единицей служит кюри (Ки). Активность, отнесенная к единице объема или едини­це массы зараженного радионуклидами вещества, называется удельной активностью. Активность, отнесенная к единице площади зараженной радионуклидами поверхности, называется плотностью поверхностного радиоактивного заражения.

Выявление радиоактивных веществ и количественная оценка их содержания в различных объектах и на поверхностях называется радиометрией. В связи с тем что радиоактивные вещества определяются по испускаемым ими ИИ, для радиометрических исследований могут применяться некото­рые дозиметрические приборы, в частности измерители мощности дозы у-излучения.

Активность — главный параметр, определяющий дозу облучения тка­ней, а следовательно, и повреждающий эффект радионуклидов при по­ступлении в организм и при наружном радиоактивном заражении тела. Вместе с тем, опасность радионуклидов зависит от агрегатного состояния и других физических свойств (адгезивности, липофильности) содержа­щих их радиоактивных веществ, а также от характера поступления, рас­пределения и выведения радионуклидов из организма.

Источники радионуклидов

1)Природные радионуклиды

Ранее отмечалась роль радионуклидов как источника естественного радиационного фона. Его земная составляющая включает в себя внешнее и внутреннее облучение от радионуклидов, присутствующих в земной коре и атмосфере.

Внешнее облучение организма на уровне моря обусловлено, в основ­ном, у-излучением радионуклидов уранового ряда, присутствующих в грунте и строительных материалах.

Помимо семейства 238U, в природе существуют еще два радиоактив­ных семейства — тория (232Th) и редкого изотопа урана — 235U. Разуме­ется, мощность дозы внешнего облучения зависит от концентраций радионуклидов в том или ином участке земной коры.

Внутреннее облучение организма обусловливают преимущественно радиоизотопы, происходящие из земной коры (37К, 238U и радионуклиды уранового ряда). Включение в состав организма (инкорпорация) радионуклидов происходит в основном за счет их поступления с пищей. Поэто­му интенсивность внутреннего облучения зависит от состава почв и характера питания населения.

 
  РБ 3.Радионуклиды как источник радиационной опасности. Радиоактивность. Параметры радиоактивного распада. Количественная оценка радиоактивных веществ - student2.ru

Радионуклидом уранового ряда, проникающим в организм ингаляци­онным путем, является радон (222Rn). Этот инертный газ высвобождается из почвы и строительных материалов, накапливаясь в закрытых непро­ветриваемых помещениях. Воздействуя на бронхиальный эпителий а- и у-излучением, радон и радиоактивные продукты его распада оказывают канцерогенный эффект. Задолго до открытия радона вызываемое этим радионуклидом заболевание (позже идентифицированное как рак легких) наблюдал у работников плохо вентилируемых шахт Парацельс, в 1567 г. описавший его.

Вклад в дозу внутреннего облучения радионуклидов «космического» происхождения, т. е. образующихся в земной атмосфере под влиянием космического излучения, существенно меньше. Содержание в тканях жи­вого организма одного из них — 14С — отличается постоянством, но по­сле смерти, вследствие радиоактивного распада, экспоненциально сни­жается. Это служит основой для радиоуглеродного метода определения возраста палеонтологических находок.

Техногенные источники радионуклидов

К техногенным объектам, содержащим радиоактивные вещества, относятся атомные энергетические установки, атомные исследовательские реакторы, объекты радиохимического производства, а также боевые час­ти ядерного оружия. Кроме того, радиоактивные вещества широко при­меняются в практике лучевой диагностики (радиография), лучевой тера­пии (внешнее, внутреннее облучение), при у-дефектоскопии промыш­ленных изделий, при изготовлении постоянно светящихся (люминесцен­тных) красок. Радионуклиды служат весьма ценным средством научных исследований. Так, радиоизотопные методы применяются для изучения метаболизма у человека, животных и растений. В среднем, доза облуче­ния организма человека от радиоактивных изотопов техногенного проис­хождения на порядок меньше, чем от природных.

Роль радионуклидов техногенного происхождения как источника облучения организма существенно возрастает при радиационных авариях и применении ядерного оружия.

РБ 4.Радиобиологические эффекты. Классификация радиобиологических эффектов по уровню формирования, срокам появления, локализации, характеру связи с дозой облучения, значению для судьбы облученного организма.

Радиобиологическими эффектами называются изменения, возникающие в биологических системах при действии на них ИИ. Сложность организ­ма как биологической системы предопределяет многообразие радиобио­логических эффектов. Критериями их классификации служат уровень формирования, сроки появления, локализация, характер связи с дозой облучения, значение для судьбы облученного организма, возможность передачи по наследству последующим поколениям и др.

Классификация радиобиологических эффектов

- По уровню формирования

На молекулярном уровне облучение биосистем вызывает набор характер­ных изменений, обусловленных взаимодействием биомолекул с самим излучением либо продуктами радиолиза воды. К таким изменениям от­носят разрывы, сшивки, изменения последовательности мономеров в молекулах биополимеров, потерю ими фрагментов, окислительную мо­дификацию, образование аномальных химических связей с другими мо­лекулами. Доля поврежденных биомолекул положительно связана с их молекулярной массой. С уязвимо­стью ДНК и ее уникальной ролью генетической матрицы связана веду­щая роль повреждений ДНК как основы радиобиологических эффектов, формирующихся на более высоких иерархических уровнях биосистемы. Во время митоза повреждения ДНК в клетке проявляются хромосомны­ми аберрациями, основными видами которых являются фрагментация хромосом, формирование хромосомных мостов, дицентриков, кольцевых хромосом, внутри- и межхромосомных обменов и т. п. Однако многие клетки погибают после облучения еще до митоза, а следовательно, и до появления хромосомных аберраций.

На клеточном уровне воздействие ИИ вызывает интерфазную или ре­продуктивную гибель клеток, временный блок митозов и нелетальные мутации.

Действие ИИ на системном уровне характеризуется цитопеническим эффектом, в основе которого лежат, преимущественно, гибель клеток и радиационный блок митозов.

Радиобиологические эффекты, возникающие на уровне организма и популяции, классифицируются в соответствии с критериями, перечислен­ными ниже.

- По срокам появления

По этому признаку радиобиологические эффекты, возникающие в орга­низме и популяции, принято подразделять на ближайшие и отдаленные. Ближайшие эффекты проявляются в сроки до нескольких месяцев после облучения и связаны с развитием цитопенических состояний в различ­ных тканевых системах организма. Примерами ближайших эффектов об­лучения могут быть острая лучевая реакция, острая лучевая болезнь, лу­чевая алопеция, лучевой дерматит.

Отдаленные эффекты возникают спустя годы после облучения, на фоне полной регрессии основных клинических проявлений острого по­ражения. Несмотря на причинную связь с облучением, отдаленные радиобиологические эффекты не являются специфическими для радиационного воздействия — эта патология вызывается и нелучевыми фактора­ми. Примерами отдаленных последствий облучения являются опухоли, гемобластозы, гипопластические, дистрофические, склеротические про­цессы. Интегральным проявлением этих последствий служит сокращение продолжительности жизни организмов, перенесших острое лучевое поражение.

- По локализации

Радиобиологические эффекты могут быть классифицированы в зависи­мости от органа или части тела, в которых они регистрируются. Весьма актуальна такая классификация в практике лечения онкологических за­болеваний, когда пораженный опухолью участок тела облучается в высо­кой дозе при тщательном экранировании здоровых тканей. При локаль­ном облучении органа или сегмента тела наиболее сильное поражающее действие ИИ проявляется именно в нем(такой эффект называют мест­ным действием ИИ). Однако изменения возникают и в необлученных тканях. В последнем случае говорят о дистанционном действии ИИ. Его примером может служить уменьшение числа миелокариоцитов в костном мозге экранированной конечности после облучения животных. Данный эффект обусловлен миграцией форменных элементов в опустошенные участки кроветворной ткани, подвергшиеся облучению, подавлением митотической активности «радиотоксинами», поступающими с кровью в экранированные ткани из облученных, физиологическим стрессом, сопровождающим облучение. Конечно, эти факторы влияют и на ткани в зоне облучения, однако в ней непосредственное действие ИИ преоблада­ет над опосредованным.

Местное действие ИИ имеет решающее значение для возникновения не только ближайших, но и отдаленных радиобиологических эффектов. Поэтому для оценки риска канцерогенного эффекта, сопровождающего неравномерное облучение, каждому органу присвоен взвешивающий коэффициент, величина которого меньше 1. Умножением эквивалентной дозы облучения органа на соответствующий ему взвешивающий коэффициент получают эффективную дозу облучения органа. Суммируя эффек­тивные дозы для органов, подвергшихся облучению, получают эффектив­ную дозу неравномерного облучения организма. Последняя численно равна эквивалентной дозе равномерного облучения организма, при кото­рой вероятность развития потенциально смертельной опухоли соответствует рассматриваемому варианту неравномерного облучения.

- По характеру связи с дозой облучения

По данному критерию радиобиологические эффекты четко разграничены на стохастические (вероятностные) и нестохастические (детерминиро­ванные).

Признаками стохастического эффекта являются (1) беспороговость и (2) альтернативный характер. Беспороговость стохастических эффектов означает, что сколь угодно малые дозы облучения способны влиять на частоту их возникновения. Альтернативный характер проявляется в том, что стохастические эффекты, подчиняясь закону «все или ничего», не мо­гут быть охарактеризованы таким показателем, как «выраженность». Примером стохастического эффекта облучения на клеточном уровне мо­жет служить гибель клетки; на уровне целостного организма — возникно­вение злокачественной опухоли. С увеличением дозы облучения вероят­ность возникновения стохастического эффекта растет, но его качество остается неизменным. При достаточно больших дозах часть облученных организмов погибает до развития у них соответствующих стохастических эффектов.

Признаками нестохастического эффекта являются (1) пороговый ха­рактер и (2) градиентная связь амплитуды с дозой облучения. Если доза облучения превышает пороговую величину (Дп), то нестохастический эф­фект возникает со 100% вероятностью, причем его амплитуда монотонно возрастает с увеличением дозы.

Знание дозовых «порогов» нестохастических эффектов(т. е. минима­льных значений вызывающих их доз) весьма важно для диагностики и профилактики лучевых поражений.

- По значению для судьбы облученного организма

Как правило, радиобиологические эффекты неблагоприятным образом сказываются на биологическом объекте. Исключением из этого правила является герметический эффект. Радиационный гормезис проявляется повышением жизнеспособности организмов под влиянием облучения в малых дозах. О возможности такого феномена свидетельствуют следую­щие факты.

♦ Всхожесть и энергия прорастания семян может быть повышена их предпосевным облучением.

♦ Выращивание животных в условиях изоляции от естественного радиационного фона сопряжено со снижением неспецифической резистентности относительно контрольного уровня.

♦ У населения территорий, имеющих высокий уровень природного радиационного фона (до 175 мЗв в год), не наблюдается более высокой онкологической заболеваемости, чем в контрольных популяциях. Поско­льку повышение заболеваемости, сопряженное с повышенным облучени­ем, вытекает из гипотезы о беспороговости канцерогенного действия ИИ, этот факт не может быть объяснен без допущения о стимулирующем действии малых доз ИИ на неспецифическую резистентность организма (т. е. о горметическом эффекте).

♦ Прием радоновых ванн, сопровождающийся облучением организма в малых дозах, обладает положительным влиянием на функциональное состояние и резистентность организма.

Реальность горметического эффекта признается не всеми специали­стами.

Возможность передачи по наследству последующим поколениям. Изменения в генетическом аппарате клеток человеческого организма могут быть унаследованы потомством лишь при условии, что эти изменения возникают в половых клетках. Мутации соматических клеток в естествен­ных условиях не наследуются (такая возможность создается лишь при клонировании организма). Поэтому практически важно разграничивать соматические (возникающие в соматических клетках) и генетические (индуцируемые при воздействии ИИ на половые клетки) радиобиологиче­ские эффекты. При общем облучении организма можно ожидать появле­ния как соматических, так и генетических эффектов.

Следует подчеркнуть, что все генетические эффекты облучения проявляются в виде врожденных признаков. В то же время далеко не все врожденные признаки являются проявлением генетических эффектов облучения. Наблюдения за лицами, родители которых были облучены до зачатия во время атомных бомбардировок Японии, не выявили значимо­го возрастания частоты врожденных дефектов. В то же время риск таких дефектов чрезвычайно высок при равном по дозе лучевом воздействии на эмбрион или плод — особенно при облучении беременной женщины в сроки с 8-й по 15-ю нед беременности. В последнем случае врожденными являются изменения, обусловленные не генетическими, а соматическими эффектами облучения плода.

Наши рекомендации