Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60—80 в минуту.

В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.

Отличительной особенностью проводящей системы сердца явля­ется наличие в ее клетках большого количества межклеточных контактов — нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Бла­годаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения воз­буждения в миокарде.

Возникнув в синусно-предсердном узле, возбуждение распрост­раняется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных суще­ствуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про­водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до пред­сердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необ­ходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5—5 м/с, что в 5 раз больше скорости рас­пространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти од­новременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель­ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио­карда, т. е. диффузно, то период асинхронного сокращения продол­жался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

Электрокардиограмма

Охват возбуждением огромного количества клеток рабочего мио­карда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позво­ляют регистрировать электрические потенциалы сердца с поверх­ности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электро­кардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко при­меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.

В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллогра­фами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помощи которых записывают ЭКГ во время активной мышечной деятельности и на расстоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние с помощью радиосвязи. Таким способом регистрируют ЭКГ у спортсменов во время сорев­нований, у космонавтов в космическом полете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.

Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравно­мерно. По этой причине в зависимости от места приложения элек­тродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так назы­ваемых стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога (рис. 3). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений.

Функции проводящей системы сердца - student2.ru

Рис. 3. Наложение электродов при стандартных отведениях электрокардиограммы (I—III) и формы ЭКГ, получаемых при этих отведениях.

Функции проводящей системы сердца - student2.ru Взаимоотношение величины зубцов в трех стандартных отведе­ниях было установлено Эйнтховеном. Он нашел, что электродви­жущая сила сердца, регистрируемая во II стандартном отведении, равна сумме электродвижущих сил в I и III отведениях. Выражением электродвижущей силы является высота зубцов, поэтому зубцы II отведения по своей величине равны алгебраической сумме зубцов I и III отведений.

Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 4 точек.

Рис. 4. Места наложения электродов при грудных отведениях электрокардиограммы (1—6) и формы ЭКГ, получаемых при этих отведениях. I—IV — межреберные промежутки.

Вторым электродом служат три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, прило­женный к трем конечностям, является индифферентным, или «ну­левым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения на­зываются униполярными, или однополюсными. Эти отведения обоз­начаются латинской буквой V (V1, V2 и т. д.).

Нормальная ЭКГ человека, полученная во II стандартном отве­дении, приведена на рис. 5. При анализе ЭКГ определяют амп­литуду зубцов в мВ (mV), время их протекания в секундах, длительность сегментов — участков изопотенциальной линии между соседними зубцами и интервалов, включающих в себя зубец и прилегающий к нему сегмент.

Формирование ЭКГ (ее зубцов и интервалов) обусловлено рас­пространением возбуждения в сердце и отображает этот процесс. Зубцы возникают и развиваются, когда между участками возбу­димой системы имеется разность потенциалов, т. е. какая-то часть системы охвачена возбуждением, а другая нет. Изопотенциальная линия возникает в случае, когда в пределах возбудимой системы нет разности потенциалов, т. е. вся система не возбуждена или, наоборот, охвачена возбуждением. Зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и же­лудочков.

Зубец Р (см. рис. 5) отображает охват возбуждением пред­сердий и получил название предсердного. Далее возбуждение рас­пространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение воз­буждения по проводящей системе желудочков не улавливается элек­трокардиографом — сегмент PQ на ЭКГ).

Функции проводящей системы сердца - student2.ru
Рис. 5. Электрокардиограмма во II стандартном отведении.

В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсердной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий ото­бражается монофазным зубцом Р.

Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов про­водящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS, отражающего охват возбужде­нием желудочков. При этом зубец Q обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней повер­хности желудочков, зубец R — возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата воз­буждением миокарда желудочков завершается к окончанию форми­рования зубца S. Теперь оба желудочка возбуждены, и сегмент ST находится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.

Зубец Т отражает процессы реполяризации, т. е. восстанов­ление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще де­поляризованными участками миокарда (т. е. обладающими отрица­тельным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистри­руется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого ото­бражения на ЭКГ зубца, соответствующего реполяризации предсер­дий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRS и поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р сопровождается комплексом QRS, наблю­дается предсердный зубец Т (T-атриум), отображающий реполяри­зацию предсердий.

Общая продолжительность электрической систолы желудочков (Q—T) почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электри­ческая).

Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала Р—Q (от начала зубца Р и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRS отражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 с (см. рис. 5).

Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, сое­диняющую в каждый момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью серд­ца. В каждый данный момент электрическая ось сердца характери­зуется определенной величиной и направлением, т. е. обладает свой­ствами векторной величины. Вследствие неодновременности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Оказалась полезной регистрация не только ве­личины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси желудочков сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардиограммы (ВЭКГ).

Наши рекомендации