Функции проводящей системы сердца
Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.
Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60—80 в минуту.
В обычных условиях автоматия всех нижерасположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.
Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества межклеточных контактов — нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.
Возникнув в синусно-предсердном узле, возбуждение распространяется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до предсердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.
Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.
Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5—5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего миокарда, т. е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.
Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую генерацию импульсов (потенциалов действия); 2) необходимую последовательность (координацию) сокращений предсердий и желудочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).
Электрокардиограмма
Охват возбуждением огромного количества клеток рабочего миокарда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позволяют регистрировать электрические потенциалы сердца с поверхности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электрокардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко применяется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.
В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллографами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помощи которых записывают ЭКГ во время активной мышечной деятельности и на расстоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние с помощью радиосвязи. Таким способом регистрируют ЭКГ у спортсменов во время соревнований, у космонавтов в космическом полете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.
Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравномерно. По этой причине в зависимости от места приложения электродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так называемых стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога (рис. 3). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений.
Рис. 3. Наложение электродов при стандартных отведениях электрокардиограммы (I—III) и формы ЭКГ, получаемых при этих отведениях.
Взаимоотношение величины зубцов в трех стандартных отведениях было установлено Эйнтховеном. Он нашел, что электродвижущая сила сердца, регистрируемая во II стандартном отведении, равна сумме электродвижущих сил в I и III отведениях. Выражением электродвижущей силы является высота зубцов, поэтому зубцы II отведения по своей величине равны алгебраической сумме зубцов I и III отведений.
Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 4 точек.
Рис. 4. Места наложения электродов при грудных отведениях электрокардиограммы (1—6) и формы ЭКГ, получаемых при этих отведениях. I—IV — межреберные промежутки.
Вторым электродом служат три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, приложенный к трем конечностям, является индифферентным, или «нулевым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения называются униполярными, или однополюсными. Эти отведения обозначаются латинской буквой V (V1, V2 и т. д.).
Нормальная ЭКГ человека, полученная во II стандартном отведении, приведена на рис. 5. При анализе ЭКГ определяют амплитуду зубцов в мВ (mV), время их протекания в секундах, длительность сегментов — участков изопотенциальной линии между соседними зубцами и интервалов, включающих в себя зубец и прилегающий к нему сегмент.
Формирование ЭКГ (ее зубцов и интервалов) обусловлено распространением возбуждения в сердце и отображает этот процесс. Зубцы возникают и развиваются, когда между участками возбудимой системы имеется разность потенциалов, т. е. какая-то часть системы охвачена возбуждением, а другая нет. Изопотенциальная линия возникает в случае, когда в пределах возбудимой системы нет разности потенциалов, т. е. вся система не возбуждена или, наоборот, охвачена возбуждением. Зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и желудочков.
Зубец Р (см. рис. 5) отображает охват возбуждением предсердий и получил название предсердного. Далее возбуждение распространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение возбуждения по проводящей системе желудочков не улавливается электрокардиографом — сегмент PQ на ЭКГ).
Рис. 5. Электрокардиограмма во II стандартном отведении. |
В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсердной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий отображается монофазным зубцом Р.
Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов проводящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS, отражающего охват возбуждением желудочков. При этом зубец Q обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней поверхности желудочков, зубец R — возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата возбуждением миокарда желудочков завершается к окончанию формирования зубца S. Теперь оба желудочка возбуждены, и сегмент ST находится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.
Зубец Т отражает процессы реполяризации, т. е. восстановление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще деполяризованными участками миокарда (т. е. обладающими отрицательным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистрируется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого отображения на ЭКГ зубца, соответствующего реполяризации предсердий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRS и поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р сопровождается комплексом QRS, наблюдается предсердный зубец Т (T-атриум), отображающий реполяризацию предсердий.
Общая продолжительность электрической систолы желудочков (Q—T) почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электрическая).
Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала Р—Q (от начала зубца Р и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRS отражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 с (см. рис. 5).
Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, соединяющую в каждый момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью сердца. В каждый данный момент электрическая ось сердца характеризуется определенной величиной и направлением, т. е. обладает свойствами векторной величины. Вследствие неодновременности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Оказалась полезной регистрация не только величины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси желудочков сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардиограммы (ВЭКГ).