Схема 1. Основные пути превращения глюкозы в печени
Фосфорилированная глюкоза, являясь анионом (за счёт фосфата), не способна преодолеть мембрану, однако после гидролиза моносахарид легко диффундирует из клетки в кровь, обеспечивая тем самым стабильность уровня гликемии.
5.Печень – главный орган, регулирующий гомеостаз глюкозы крови за счёт создания динамического равновесия между скоростью синтеза и распада глюкозо-6-фосфата и интенсивностью генеза и расщепления гликогена.
6.Гепатоциты после преобразования Г-6-Ф в УДФ-глюкозу (схема 1) способны использовать последний продукт для получения других моносахаридов и их производных (УДФ-галактозы, УДФ-галактозамина, УДФ-маннозы, УДФ-ацетилгалактозамина, сиаловых кислот и т.д.), которые позднее служат субстратами в синтезе различных гетерополисахаридов, в том числе протеогликанов, липогликанов, гликозаминогликанов.
7.Подобным образом в печени синтезируется УДФ-глюкуроновая кислота, которая, как вышеназванные соединения, может включаться в ГАГи, такие как гиалуроновая кислота, хондроитин-сульфаты А, С, гепарин, гепаран-сульфат. Специфической же функцией УДФ-глюкуроната является участие в инактивации (биотрансформации) различных биологически активных веществ (БАВ): стероидных гормонов, билирубина, лекарственных средств (см. ниже).
8.Только в печени регистрируется активность сорбитол-дегидрогеназы (сорбитол-ДГ), с помощью которой многоатомный спирт – сорбит(ол), окисляется в моносахарид фруктозу. Последняя под действием фруктокиназы или гексокиназы фосфорилируется, что позволяет получившемуся соединению вступить в гликолиз (распад глюкозы). Обнаружение активности сорбитол-ДГ в плазме крови служит своеобразным маркёром патологии печени.
9.В цитоплазме гепатоцитов так же, как и в клетках коры надпочечников, липоцитах, фолликулах щитовидной железы, эритроцитах протекает альтернативный путь окисления глюкозы – пентозофосфатный путь (ПФП). Он не ставит целью синтез АТФ (как в гликолизе), а выполняет следующие функции: а) восстановление НАДФ, который в гепатоцитах необходим в процессе синтеза высших жирных кислот (ВЖК), холестерина (ХС), жёлчных кислот. Кроме того, для гидроксилирования некоторых ядов, лекарственных веществ (амидопирина, морфина, бензофетамина и др.) в микросомах гепатоцитов также используется восстановленный НАДФ; б) образование рибозо-5-фосфата, который в виде фосфорибозилпирофосфата служит одним из субстратов синтеза моно-, ди-, полинуклеотидов.
10.Гипогликемия, развивающаяся после потребления непривычных количеств алкоголя, обусловлена конкурентными взаимоотношениями между необходимостью биотрансформировать этиловый спирт и потребностью глюконеогенеза для поддержания гомеостаза глюкозы крови. Для окисления этанола, так же как и для окисления лактата, требуются значительные величины НАД+; возникает ситуация, характерная для буриданова осла. Чаще она разрешается в пользу алкоголя, провоцируя тем самым гипогликемию (см. схему 2).
11.Глюкозо-6-фосфат (схема 1) через гликолиз и окислительное декарбоксилирование ПВК распадается до ацетил КоА, из которого в печени синтезируются ацилы ВЖК, включающиеся позднее в нейтральные жиры и глицерофосфатиды (судьбу их смотрите ниже).
Мышцы Кровь Печень
Глюкозо-6-фосфат
Гликолиз Этанол
Лактат Лактат НАД+
Алкоголь-
НАД+ НАДН+Н+ ДГ
ЛДГ Ацетальдегид
НАДН+Н+ НАД+ Ацеталь-
дегид-ДГ
НАДН+Н+
ПВК Ацетат