Влияние низких температур на биологические препараты
Изменения, наступающие в биологических объектах под влиянием низких температур,
можно разделить на: 1) изменения физиологического характера; 2) изменения физико-
химического порядка; 3) изменения механического порядка. К явлениям физиологического
характера следует отнести так называемый температурный шок, возникающий в результате
воздействия низких температур. Термин «температурный шок» впервые был предложен
Миловановым в 1934 г., наблюдавшим потерю подвижности сперматозоидов быка и
барана в результате их внезапного охлаждения от 15 до 0°.
Температурный шок при внезапном охлаждении . наблюдается и у ряда видов
бактериальных клеток, особенно в фазе логарифмического роста. При быстром
охлаждении молодых культур от 37 до 0° погибает до 95% особей бактерий Е. соП. При
постепенном снижении температуры в указанных пределах бактериальные клетки не
повреждаются. Температурного шока можно избежать путем постепенного охлаждения
организмов и изолированных клеток в тех же пределах температуры, в которых при
быстром и сверхбыстром, охлаждении возникает шок. Постепенное охлаждение
способствует так называемой холодной адаптации, частичного уменьшения содержания
воды.
На чувствительность клеток к температурному шоку существенно влияет состав среды,
в которой они находятся. Чувствительность сперматозоидов к температурному шоку
значительно понижается при добавлении к сперме в качестве разбавителя яичного желтка,
защитное действие которого обусловливается предположительно за счет лецитина.
Эритроциты при быстром охлаждении от 30 до 5° обычно не повреждаются, но
повышение концентрации, хлористого натрия до 0,8М и выше ведет в этих условиях к
гемолизу их.
Температурный шок может возникать у одноклеточных многоклеточных организмов
при быстром охлаждении их не только до 0°, но и ниже. Было доказано, что лейкемические
клетки мышей выживают, сохраняя способность к заражению, только при условии
медленного замораживания до -70°. Более высокая выживаемость наблюдается и при
медленном охлаждении от 0 до -79° патогенных простейших и сперматозоидов по
сравнению с быстрым и сверхбыстрым замораживанием.
Патогенные амебы и другие простейшие, ткани яичника, яйцеклетки млекопитающих ,
ткани гипофиза и надпочечника, ткань семенника, опухолевые клетки и некоторые виды
микроорганизмов сохраняют жизнеспособность, при медленном замораживании, но не
переносят быстрого и сверхбыстрого охлаждения до низких температур. Механизм
температурного шока в результате быстрого и сверхбыстрого охлаждения до нуля и
замораживания при низких температурах объясняется внезапным изменением
осмотического давления внутри клеток. Медленное охлаждение ослабляет интенсивность
изменения осмотического давления вследствие диффузии воды из клеток через клеточные
мембраны и кристаллизации ее в межклеточных пространствах. Это явление называют
также температурной адаптацией. Быстрого и сверхбыстрого замораживания и хранения
биологических материалов при возможно низкой температуре. К таким материалам
относятся ферменты и некоторые виды микроорганизмов.
Одним из преимуществ быстрого охлаждения является также то, что в этих условиях
действие концентрированных левых растворов после выделения льда занимает менее
продолжительный период до достижения их эвтектической точки.
Что касается тканей млекопитающих, предназначенных для последующей трансплантации или культивирования, за исключением клеток некоторых опухолей,
паращитовидной желез, то они в большинстве случаев после быстрого и замораживания не проявляют признаков жизнеспособности. Следовательно, оптимальная скорость охлаждения и замораживания зависит от ряда условий.
Нарушения физиологического характера, наступающие при замораживании, обычно
сопровождаются физико-химическими и структурными изменениями в биологических
системах. Эти изменения обусловливаются в основном вне- и внутриклеточной
кристаллизацией воды и эвтектической концентрацией солей. Оба указанных фактора тесно
взаимосвязаны и взаимозависимы. Один из них вызывает чисто механические
(кристаллизация), другой (концентрация солей) — физико-химические изменения в
клетках животного и растительного происхождения. Увеличению концентрации
электролитов при замораживании всегда сопутствует кристаллизация воды. Увеличение
концентрации солей, как при положительных температурах, так и при замораживании
ведет к денатурации белков и к растворению липопротеинов.
При замораживании любого биологического материала, безусловно содержащего в
растворенном состоянии различные соли, наблюдается эвтектическое разделение раствора.
Сначала кристаллизируется чистая вода, а соли концентрируются в незамерзшей части до
тех пор, пока не будет достигнута наивысшая их концентрация. Предел максимальной
концентрации солей материалов любого происхождения, вслед за которым наступает
полное затвердение раствора при низких температурах, называют эвтектической точкой.
Так, например, максимальная (эвтектическая) концентрация поваренной соли,
составляющая 22,42%, достигается при температуре -21,2°. При понижении температуры
концентрация соли больше не увеличивается, так как такой раствор полностью
затвердевает.
Степень повреждающего действия концентрированных солей, приближающаяся к
эвтектической, зависит от состава суспензии, количества белка, а также от природы соли и
скорости замораживания.
Жидкости биологических систем являются обычно весьма сложными растворами,
содержащими целый комплекс солей с разными эвтектическими точками. В таких
растворах, по данным Рэ, практически невозможно определить эвтектическую точку в
силу разности эвтектической концентрации различных солей. В сложных биологических
растворах обычно определяется эвтектическая зона в пределах 10° и более с минимальной и
максимальной границами. В интервале этой зоны и происходит замерзание
гипертонических растворов разных солей.
Гипертоническая концентрация солей губительно влияют на ткани и клетки животных,
простейших и бактерий в процессе замораживания и хранения при температурах равных
эвтектической зоны.
В процессе замораживания вода из клеток переходит в окружающую среду с такой
скоростью, что точка замерзания их внутреннего содержимого становится несколько ниже
точки замерзания окружающей жидкости. К моменту, когда окружающая клетки жидкость
концентрируется до насыщения, содержимое клеток оказывается достаточно обезвоженным
и не может замерзнуть. Вне- и внутриклеточная кристаллизация всегда сопровождаются
концентрированием солевых растворов при низких температурах, разрушающее действие
которых в настоящее время доказано и не вызывает сомнения. Однако нельзя не учитывать
и действие кристаллов льда, вызывающее разрушение коллоидных растворов, нарушение
равновесия между гелем и золем и связи ферментов с их субстратами.
Особенно вредна внутриклеточная кристаллизация воды, как правило, ведущая к
разрушению структуры и гибели животных клеток. При быстрых скоростях охлаждения
вне- и внутриклеточная кристаллизация может наступать практически одновременно.
При сверхбыстрых скоростях охлаждения до очень низких температур стадия
кристаллизации минуется и препарат переводится в стекловидное состояние
(витрифицируется). По утверждению Люйе, гибель клетки не наступает, если удается
перевести протоплазму в стекловидное состояние и затем вновь в жидкое, минуя стадию
кристаллизации. Он показал, что критическая зона температуры, при которой образуются
кристаллы, находится в пределах 0 до -40°. При сверхбыстром охлаждении
концентрированных растворов белков, Сахаров и многоатомных спиртов, нанесенных в виде
тонкой пленки путем погружения в сжиженные атмосферные газы при температурах от -150
до -196°, они превращаются в прозрачные «стекла». При медленном отогревании такие
«стекла» кристаллизуются и становятся непрозрачными, а при быстром отогревании они
тают, не подвергаясь кристаллизации.
Хотя утверждения Люйе об отсутствии кристаллов льда в материалах при сверхбыстром
охлаждении остаются спорными (231, 980) поскольку рентгеноструктурный анализ
свидетельствует о наличии кристаллов (450), тем не менее, при таких условиях
замораживания наблюдается высокая выживаемость животных клеток. Для поддержания
сверхбыстрозамороженного материала в стекловидном состоянии необходима температура
ниже-130 .