Генетическая теория естественного отбора. Обьект, сфера, действие и механизм отбора, его количественные характеристики. Факторы влияющие на эффективность отбора

Естественный отбор-важнейший движущий фактор эволюции, определяющий направленное изменение состава популяции, т.е. приспособления их к условиям окружающей среды. Дарвин подчеркивал, что естественный отбор-отбор, происходящий в природе без вмешательства человека. Это сохранение и преимущественное размножение. Переживание наиболее приспособленных. Отбор происходит в результате борьбы за существование через элиминацию, следовательно отбираются фенотипы. Конкурируют живые организмы. Отбор идет по фенотипам, но отбираются генотипы. Причем отбираются не отдельные гены, а целостные генотипы,определяющие онтогенез следующего поколения.

Вновь возникающие мутации снижают приспособленность. Отбор идет по комбинативной изменчивости-основной материал для отбора. Фенотипическое выражение мутаций,т.е. степень и характер изменения организма,зависит и от генотипа и от условий среды,в которой данный генотип реализуется.Мутационная изменчивость не направлена,но комбинативную изменчивость можно считать случайной лишь при наличии панмиксии,т.е. случайности скрещивании особей данного поколения.Однако поскольку размножаются особи только достаточно приспособленные и это происходит из поколения в поколение, в череде поколений комбинирование-направленный процесс, даже в случае панмиксии.

Сложная иерархическая система внутривидовых группировок оптимальна для эволюции, т.к. она обеспечивает быстрое выявление новых аллелей,быстрое распространение адаптивных вариантов и высокий уровень изменчивости. На эволюционный процесс оказывают влияние колебания численности популяции:с увеличением численности реализуется большое число комбинаций,что обеспечивает повышенное генетическое разнообразие популяции. При спаде численности элиминируются неблагоприятные варианты и возрастает гомозиготность по неблагоприятным.

Естественный отбор-процесс направленный, векторизованный и как всякий вектор имеет 3 параметра: точку приложения, т.е. признак,по которому идет отбор;величину,характеризующюю адаптивной ценностью,или относительной приспособленностью;направление,определяемое условием борьбы за существование.

15.2. Ферменты как биокатализаторы, их специфичность относит. молекул. масса белков, облад-х ферментными св-ми, колеблется от 15 тыс. до н-х млн. Ферменты явл-ся глобулярными белками, вкл-т простые (однокомпонентные) и сложные (двукомпонентные).

Белковая часть двукомпонентных ферментов называется апоферментом, молекула в целом- холоферментом, небелковые компоненты легко диссоциирущие из комплекса- коферменты. Они действуют как акцепторы атомов или субстраты. Е’K+AH2 A+E’ · KH2 , E’ · KH2 + B E’ · K + BH2

(E-фермент, К-кофермент, AH2,В- субстраты).Соединение белковой части с небелковой осущ-тся за счет ионных, водородных связей, гидрофобных взаимодействий, реже- с помощью ковалентных связей.

Функции:

1) участие в акте катализа;

2) осуществление контакта между ферментативным белком и суб-стратом;

3) стабилизация апофермента. Апофермент определяет специфичность действия.

Один и тот же апофермент может функционировать в составе разных ферментов. НАД является коферментом многих

дегидрогеназ. Ферменты внутри клетки содержатся и действуют в определенных ее орга неллах. Почти все ферменты гликолиза обнаруживаются в цитоплазме, ферменты окислительного фосфорилирования во внутренней мембране.

В ядрах ферменты синтеза нуклеиновых кислот ДНК-полимеразы, РНК- полимеразы). В лизосомах гидролитические ферменты. В пероксисомах ферменты метаболизма гликолевой кислоты и утилизации пероксида водорода. В матриксе митохондрий-ферменты окисления жирных кислот. В строме хлоропластов-рибулозодифосфат карбоксилаза и др.ферменты, участвующие в синтезе углеводов из СО2.

В мембраны хлоропластов встроены АТФ-азы и переносчики электронов, функционирующие в процессе фотосинтеза. При ферментативном катализе наблюдается снижение активации. Реакции протекают ступенчато. Активационный барьер разбивается на несколько более низких.

3 стадии:

1)присоединение молекулы субстрата S к ферментату Е;

2)превращение субстрата; 3)определение конечных прод-в р-ции от фермента. 1-ая стад. -быстрая-образование ферментных комплексов, 2-ая-медленная. Образование ферментсубстратного комплекса возможно из-за определенного сродства ферментов к субстрату.

Различают положительные эффекторы (метаболиты, вызывающие аллостерическую активацию (обратимое связывание ферментами некоторых метаболитов вызывает уменьшение или увеличение активности фермента). И различают отрицательные, связывание которых с ферментом снижает скорость реакции благодаря аллостерическому ингибированию.

Аллостерический эффектор связывается с аллостерическим центром, изменяет конформацию фермента, что вызывает изменение сродства фермента к субстрату.

Если в системе накопления много конечного продукта, то его образование будет ингибировано, в результате чего конечный продукт как ингибитор первого фермента в метаболическом цикле, ведущем к синтезу этого продукта. Это ретронгибирование рН, при котором скорость реакции максимальна, называется оптимумом, при отклонении рН в любую сторону от этого значения скорость реакции снижается. При нагревании выше 80 С преобладающее большинство ферментов полностью денатурирует.

Температурный оптимум 40-60 С. Большинство ферментов хорошо сохраняет активность при положительных и отрицательных температурах.Только холодолабильные инактивируются при понижении t от 30 до 40 градусов.

16.1. Стебель, особенности морфологии и функции. Формирование анатомической структуры стебля. Камбий, его развитие, строение. Образование вторичных проводящих тканей. Основные типы вторичного роста: кирказон, подсолнечник, липа-тип.

Стебель – осевой ортотропный орган неограниченного роста, нарастающий обычно верхушкой. Стебель несёт листья, развив-ся экзогенно, и характеризуется отриц-м геотропизмом. Стебли представ­лены большим разнообразием по структуре: от стеблей деревьев, сильно дифференцированных (ствол, ветвь, побег), до более однородных травяни­стых стеблей-побегов и несколько видоизмененных вроде цветоножек, цве­толожа, филлокладий и т.п. Функции стебля: Стебель - связующее звено между двумя полюсами растения: листьями (воздушное питание — фотосинтез) и корнями (почвенное пита­ние). В стебле происходит непрерывный транзит: а) пластических веществ (в основном нисходящий ток) и б) воды и растворенных минеральных солей и микроэлементов (в основном восходящий ток).

Ветвление стебля обусловливает развитие мощной ассимиляционной поверхности листьев и ориентировку растения по отношению к свету (Дихотомич-е: точка роста раздваивается, в результате чего от самой верхушки оси первого порядка отходят две оси второго порядка, которые в свою очередь раздваиваются. Моноподиальное: главный стебель, развивающийся из зародыша семени, сохраняет все время точку роста, за счет которой и нара­стает ось растения. главная ось - моноподий имеет неограниченный верхушечный рост. От моноподия отходят боковые оси второго, третьего и т. д. порядков. При этом часто наблюдается уменьшение длины боковых осей в терминальном направлении. Ель - Picea. Симподиальное: точка роста главной оси расте­ния рано перестает функционировать (нарастать). Продолжает главную ось боковая ветвь (ось второго порядка), конус нарастания которой функ­ционирует ограниченно, и основной стебель продолжает боковая ветвь третьего порядка и т.д. Таким образом, главная ось растения не монолитна, как в предыдущем случае, а состоит из целой серии осей первого, второго, третьего и т.д. порядков. Груша, липа. Ложнодихотомическое: не составляет особого типа, а является вариантом симподиального. Здесь также ежегодно отмирает верхушечная почка. Здесь одновременно развив-ся 2 супротивно пазушные почки. Конус нарастания не раздваивается, а отмирает. Каштан).

Во многих случаях стебель служит вместилищем запасных веществ. Стебель может быть органом вегетативного размножения.

Развитие побега.Структура побега в онтогенезе растения складывается очень рано. Уже в покоящемся зрелом семени заложены в виде зачатков основные органы растения: зачаточный корешок, стебель (гипокотиль) и почка. В высоту стебель растет своей верхушкой, которую называют точкой роста, или конусом нарастания. Новые листья и почки - будущие ветви - образуются в процессе развития конуса нарастания. Меристема конусов, нарастания относится к типу апикальных.

В точках роста цветковых растений поверхностные слои мери­стемы отличаются от внутренних характером деления клеток. Клетки наружных слоев, образующие при делении перегородки перпендикулярно поверхности (антиклинально), получили название туники. Внутренние слои клеток конуса делятся по всем направлениям и называются корпусом. Таким образом, деление клеток в слоях туники увеличивает поверхность точки роста, а клеток корпуса - ее объем. Число слоев туники у различных растений различно. У некото­рых хвойных, например пихты, в самом наружном слое клетки делятся как перпендикулярно, так и параллельно поверхности. У ряда однодольных, у многих водных растений, реже у двудоль­ных туника представлена всего одним слоем клеток. Например, у пшеницы, элодеи, лука-порея, норичника шишковатого, в поч­ке кочана капусты туника двухслойная; у сирени, георгины - трехслойная, а у калины - четырехслойная. Образование зачатков листьев начинается большей частью во внутренних слоях туники. Благодаря периклинальным делениям клеток туники по сторонам точки роста более или менее близко к ее вершине возникают в виде бугорков зачатки листьев. Первичное стр-е стебля слагается в рез-те дифференц-я тканей, обр-х из меристематических кл-к конуса нарастания. Под эпидермой нах-ся первичн-я кора, сост-я из неск-х рядов паренхиматических кл-к. наружн. Слои первичной коры превр-ся в колленхиму - луб (опора), часто здесь закл-ся склеренхима. Самый внутр. слой перв. коры стебля обр-т эндодерму, к-ки кот. сод-т много крахмала. Внутрь от эндодермы расп-ся центр. цилиндр – стела. Наружная часть его – перицикл. Сердцевина заним-т центр. часть цилиндра. Паренхимные кл-ки её вытянутые. Сердцевина соед-ся с перв. корой первичными сердцевинными лучами, сост-ми из паренх-х кл-к. Провод. пучки развив-ся из прокамбия, кот. распол-н под конусом нарастания. При перв. стр-нии стебля ксилема сост. из прото- и метаксилемы, а флоэма – из прото- и метафлоэмы. Первыми сосудами оказ-ся спиральные и кольчатые. Кс. обращена к внутр. части стебля, а фл. кнаружи. Центр. цилиндр стебля связан с листьями лист. следами, с ветками - веточн. следами.

Вторичн. стр-е стебля. Втор. утолщ-е связано с увеличивающимся кажд. год притоком продуктов ассимиляции. Во вторичном строении стебля различают два основных типа, различие между которыми заложено еще вверхушке побега, в конусе на­растания.

Вторичное строение стебля может быть трех типов: пучковое, переходное и непучковое.

1. Пучковое строение (кирказон-тип)характерно для растений, прокамбий которых закладывается отдельными пучками. Пер­вичное строение у них пучковое. Пучковый камбий возникает из прокам­бия и образует в пучках элементы вторичной флоэмы и вторичной кси­лемы. Клетки основной паренхимы, расположенные между проводя­щими пучками, дают начало межпучковому камбию, который дифференцируется в паренхиму сердцевинных лучей. Поэтому и при вторичном строении, несмотря на образование сплошного камбиального кольца, сохраняется пучковое строение. У двудольных растений в отли­чие от однодольных проводящие пучки в стебле располагаются в один ряд по кругу.

2. Переходное строение (подсолнечник-тип)наблюдается у растений, стебель которых в первичном строении так же, как и в первом типе, имеет пучковое строе­ние. Различия проявляются в деятельности камбия. Вторичную флоэму и вторичную ксилему формирует не только пучковый камбий, но и меж­пучковый камбий. Это приводит к появлению новых проводящих пучков, расположенных между прежними. Постепенно происходит смыкание пучков и образование сплошного кольца флоэмы, камбия и ксилемы. При переходном строении четко проявляются разли­чия между первичным (пучковым) и вторичным (непучковым) строениями стебля.

3. Непучковое строение (липа-тип)(сплошное) возникает из сплошного прокамбиального цилиндра, закладывающегося под конусом нарастания (на поперечном срезе эта меристема имеет кольцеобразный или пря­моугольный характер). Заложившись, он откладывает элементы прото- и метаксилемы внутрь стебля и прото- и метафлоэмы — к поверхности стебля. Поэтому при первичном и вторичном строении стебля элементы флоэмы и ксилемы располагаются полыми цилиндрами. Различия между первичным и вторичным строением стебля не выражены.

Камбий. Клетки камбия имеют характерную форму. Это сильно вытянутые, узкие четырехгранные призматические клетки с двускатными или одно­скатными поперечными стенками. Радиальные стенки клеток камбия толще тангентальных и имеют круглые первичные поры, которые по­том на образовавшихся из камбия элементах ксилемы развиваются в окаймленные поры, а во флоэме - в ситовидные пластинки. Длина клетки превышает ее ширину. Средняя длина камбиальной клетки у двудольных равна 0,6 мм, а у голосемен­ных - 3,6 мм. В процессе эволюции длина камбиальной клетки умень­шается. Клетка камбия одноядерна. Ядро занимает центральное поло­жение. Число и размеры вакуолей зависят от сезона; весной их больше и они крупнее. Деление клеток камбия происходит большей частью в тангентальном направлении. Камбий энергично развивается весной. Деление камбиальных клеток не имеет строгой последовательно­сти в отношении откладывания элементов ксилемы и флоэмы. Ксилемные элементы откладываются значительно чаще и в большем количестве, поэтому масса стебля состоит преиму­щественно из древесины. Одна клетка флоэмы возникает после образования нескольких клеток ксилемы. Это приводит к тому, что на флоэмную часть приходится сравнительно узкий пояс периферии стеб­ля, а почти весь мощный объем ствола выполнен ксилемой.

16.2. Аппарат Гольджи: общая характеристика, строение, функции. Диктиосома. Синтетические процессы в аппарате Гольджи. Пути синтеза и выведения секреторных продуктов в клетке.

Аппарат Гольджи – клеточный органоид. Открыт в 1898 в нервных клетках. Присутствует во всех клетках. Строение в разных кл варьирует (в виде сетей или отдельных диктиосом). Предсавлен 3 типами образований: диктиосомы, межцистерные трубочки, визикулы (пузырьки). Но структурная единица А.Г. – диктиосома. А.Г. представлен мембранными структурами, собранными вместе в небольшой зоне. Отдельная зона скопления этих мембран – диктиосома. В диктиосоме плотно др. к др. расположены в виде стопки плоские мембранные мешочки или цистерны. Каждая отдельная цистерна имеет переменную толщину (в центре м/б сближения, а на концах расширения). Кол-во цистерн в стопке не превышает 5 -10. В зоне А.Г. наблюдается множество вакуолей, кот могут отшнуровываться от цистерн. Выделяют дистальную и проксимальную часть или полюса регенерации и секреции. В проксимальной части (полюс регенерации) расположены короткие цистерны, мелкие гладкие вакуоли, зона направленная к ядру. Дистальная (полюс секреции) – к поверхности кл. Хар-ся наличием крупных вакуолей, часто содержащих продукты секреции. Отдельные диктиосомы м.б. связаны м/у собой системой вакуолей и цистерн. У растений диффузная система А.Г. Функции: - модификация белков (глюкозирование, сульфатирование, и т.п.); - упаковка секретируемых продуктов в гранулы; - в цистернах синтез полисахаридов; - формирование кл мембран; - образование лизосом и вакуолей; - в раст кл синтез гемицеллюлозы и пектины кл стенки; - выведение продуктов метаболизма из кл. А.Г. практически лишен рибосом, располагается в живых кл вокруг центриолей. В секреторных клетках – в апекальной части и в состав входят секреторные гранулы, сетчатая форма А.Г. располагается по близости от ядра, отдельные диктиосомы по всей клетке.У низших растений диктиосомы обычно связаны с элементами ретикулума. От ретикулярных цистерн отчленяются мелкие пузырьки, которые в одной плоскости сливаются друг с другом, и таким образом формируют диктиосомные цистерны на одной стороне диктиосомы – полюс регенерации. Созревание цистерн происходит по мере их перемещения к противоположной стороне – секреторному полюсу. Оно сопровождается повышением активности цистерн, выражающейся в увеличении числа очленяемых ими пузырьков Гольлджи. В-ва, секретируемые из А.Г. при участии визикул, выносятся в периплазматическое пространство. Мембраны пузырьков слив-ся с плазмолеммой, становятся ее частью (пополняют плазмалемму), что очень важно при росте клеток растяжением=> возникает непрерывная система: гладкий эндоплазматический ретикулум – диктиосома – визикулы – плазмолемма (визикулы и плазмолемма имеют общие мембраны). Таким образом, мембранный материал, теряемый на секреторнм полюсе, постоянно пополняется на регенерационном, и число и размер цистерн в диктиосоме не меняются, а только происходит их непрерывное обновление. Такая непрерывная система выявляется только у низших растений и грибов, у высших растений источник происхождения мембран диктиосомных цистерн и пузырьков Гольджи остается неизвестным.

Наши рекомендации