Производные микробной клетки. Исследование подвижности микробов.
Клеточная стенка.
В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом толстой клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид.
Функции клеточной стенки:
1. Обусловливает форму клетки.
2. Защищает клетку от механических повреждений извне и выдерживает значительное внутреннее давление.
3. Обладает свойством полупроницаемости, поэтому через нее избирательно проникают из среды питательные вещества.
4. Несет на своей поверхности рецепторы для бактериофагов и различных химических веществ.
Метод выявления клеточной стенки - электронная микроскопия, плазмолиз.
Протопласт(от др.-греч. πρῶτος — «первый» + πλαστός — образованный, вылепленный и др.) — содержимое растительной или бактериальной клетки, за исключением внешней клеточной оболочки (клеточной стенки), однако при сохранении клеточной (плазматической) мембраны.
Сферопласт (от др.-греч. sphaira — шар и plastos — созданный, образованный) — бактериальная клетка с частично разрушенной (редуцированной) клеточной стенкой, характеризующаяся неустойчивостью к изменениям осмотического давления. В гипертоничной среде обычно сферопласты принимают сферическую форму, а в изотоничных средах могут размножаться и осуществлять множественные метаболичные реакции, характерные для интактного организма; поддерживать развитие бактериофагов
L-формы бактерий, их медицинское значение
L-формы - это бактерии, полностью или частично лишенные клеточной стенки (протопласт +/- остаток клеточной стенки), поэтому имеют своеобразную морфологию в виде крупных и мелких сферических клеток. Способны к размножению.
Цитоплазматическая мембрана располагается под клеточной стенкой (между ними - периплазматическое пространство). По строению является сложным липидобелковым комплексом, таким же, как у клеток эукариот (универсальная мембрана).
Функции цитоплазматической мембраны:
1. Является основным осмотическим и онкотическим барьером.
2. Участвует в энергетическом метаболизме и в активном транспорте питательных веществ в клетку, так как является местом локализации пермеаз и ферментов окислительного фосфорилирования.
3. Участвует в процессах дыхания и деления.
4. Участвует в синтезе компонентов клеточной клетки (пептидогликана).
5. Участвует в выделении из клетки токсинов и ферментов. Цитоплазматическая мембрана выявляется только при электронной микроскопии.
Производные микробной клетки. Исследование подвижности микробов.
Изучение подвижности микроорганизмов
Для исследования используют культуру бактерий, выращенных в жидкой питательной среде, или взвесь бактерий в изотоническом растворе натрия хлорида.
Метод раздавленной капли. На предметное стекло наносят пипеткой каплю культуры и покрывают ее покровным стеклом. Чтобы не образовывалось пузырьков воздуха, покровное стекло подводят ребром к краю капли и резко опускают его. Для предохранения препарата от высыхания его помещают во влажную камеру.
Влажная камера представляет собой чашку Петри, на дне которой находится влажная фильтровальная бумага. На бумагу кладут две спички и на них помещают препарат. Чашку закрывают крышкой. Микроскопируют при увеличении объектива 40х в темном поле.
Метод висячей капли. Для приготовления препарата необходимы стекло с лункой, покровное стекло и вазелин. Края лунки покрывают тонким слоем вазелина.
На покровное стекло наносят каплю культуры. Затем осторожно накрывают покровное стекло стеклом с лункой так, чтобы капля оказалась в центре. Склеившиеся стекла быстро переворачивают покровным стеклом вверх. Капля находится в герметической камере и сохраняется долгое время. При микроскопии сначала при малом увеличении (8х) находят край капли, а затем проводят изучение препарата при большом увеличении.
Жгутики и подвижность
Подвижность бактерий может обеспечиваться различным образом. У большинства активно передвигающихся, плавающих бактерий движение обусловлено вращением жгутиков. Двигаться без жгутиков способны скользящие бактерии (к которым относятся миксобактерии, цианобактерии и некоторые другие группы) и спирохеты. О механизмах их движения будет сказано при рассмотрении соответствующих групп бактерий. Расположение жгутиков.Расположение жгутиков у подвижных эубактерий - это признак, характерный для определенных групп, поэтому оно имеет таксономическое значение. У палочковидных бактерий жгутики могут прикрепляться полярноили латерально(рис. 2.34). Среди бактерий с монополярным жгутикованием лишь немногие снабжены только одним, но зато особенно толстым жгутиком - это монотрихи (Vibrio metschnikovii, рис. 2.35; Caulobacter sp.). У многих бактерий с монополярным и биполярным жгутикованием одиночный по виду жгутик в действительности представляет собой пучок из 2-50 жгутиков (политрихи). Монополярно-политрихальное расположение жгутиков называют также лофотрихальным(как у Pseudomonas, Chromatium), а биполярно-политрихальное - амфитрихальным (у Spirillum). У Selenomonas имеется один пучок жгутиков, прикрепленный сбоку (рис. 2.36,2>). При перитрихальномрасположении (как у Enterobacteriaceae, Bacillaceae и не которых других бактерий) жгутики располагаются по бокам клетки или на всей поверхности (рис. 2.36,4). Выявление жгутиков.Рассмотреть жгутик (или пучок жгутиков) в проходящем свете или в условиях фазового контраста удается только у немногих бактерий, например у Chromatium okenii, Bdellovibrio,Thiospirillum (рис. 2.37). У многих других бактерий (Pseudomonas, Spirillum и др.) жгутик и зону его биения можно увидеть только в темном поле. Легче всего выявлять жгутики путем нанесения на них красителя или металла, а также с помощью электронного микроскопа. Функции жгутиков.У большинства бактерий с полярным расположением жгутиков последние действуют подобно корабельному винту и проталкивают клетку в окружающей жидкой среде. Жгутик представляет собой спирально извитую нить, приводимую во вращательное движение «мотором», находящимся в месте ее прикрепления в плазматической мембране. Для перемещения клетки может служить одиночный жгутик или пучок жгутиков. Жгутики вращаются сравнительно быстро; например, у спирилл они совершают около 3000 оборотов в минуту, что близко к скорости среднего электромотора. Вращение жгутиков приводит к тому, что тело клетки вращается примерно с 1/3 этой скорости в противоположном направлении. Жгутики могут спонтанно или в ответ на внешний стимул изменять направление вращения (рис. 2.34). У некоторых бактерий с полярным расположением жгутиков это приводит к тому, что клетка начинает двигаться вспять. Когда у Chromatium okenii в ответ на вспышку света направление вращения жгутиков меняется, пучок жгутиков превращается в тянущее приспособление; при этом назад клетка перемещается в четыре раза медленнее, чем вперед, и ее движение становится «кувыркающимся». У Thiospirillum jenense - гигантской фототрофной спириллы - единственный полярный пучок жгутиков при обратном движении бьется уже не впереди клетки: пространство биения жгутиков теперь охватывает клетку с боков: оно как бы вывернуто наизнанку (подобно вывернутому ветром зонту). У спирилл с амфитрихальным расположением жгутиков в таком положении находится, смотря по обстоятельствам, то один, то другой пучок. Перитрихально расположенные жгутики Escherichia coli работают как один хорошо скоординированный спиральный пучок и проталкивают клетку через среду. В тех случаях, когда направление вращения отдельных жгутиков меняется, клетка начинает «кувыркаться». По-видимому, перитрихально расположенные жгутики не могут служить тянущим приспособлением. Бактерии, снабженные жгутиками, могут передвигаться очень быстро: Bacillus megaterium со скоростью 1,6 мм/мин, Vibrio cholerae - 12 мм/мин. Это соответствует примерно от 300 до 3000 длин тела в минуту. Тонкое строение жгутиков.Жгутики представляют собой спирально закрученные нити. У разных бактерий они различаются по своей толщине (12-18 нм), длине (до 20 мкм), а также по длине и амплитуде витка. Эти параметры характерны для каждого вида. У некоторых бактерий могут образовываться жгутики разных типов. Нити жгутиков состоят из специфического белка флагеллина. Они построены из субъединиц с относительно малой молекулярной массой. Субьединицы располагаются по спирали вокруг внутреннего свободного пространства (подобно белковым молекулам в вирусе табачной мозаики). Таким образом, структура жгутика определяется свойствами белковых субъединиц. Жгутик состоит из трех частей - описанной выше спиральной нити, «крюка» вблизи поверхности клетки и базального тельца. С помощью базального тельца жгутик закреплен в плазматической мембране и в клеточной стенке (рис. 2.38). Оно состоит из центрального стержня, на котором у грам-отрицательных бактерий находятся две пары колец. Наружная пара (кольца L и Р) расположены на уровне наружного и внутреннего слоев клеточной стенки, а внутренняя пара (кольца S и М) - на уровне наружного слоя плазматической мембраны. Так как у грам-положительных бактерий наружная пара колец отсутствует, полагают, что для вращения жгутиков необходима только внутренняя пара. Можно представить себе, что кольцо М действует как приводной диск, а кольцо S играет роль подшипника на внутренней поверхности пептидогликанового слоя. Молекулярный механизм вращательного «мотора» жгутика пока не выяснен. О- и Н-аитигены.Proteus vulgaris часто распространяется по всей поверхности агара в виде тонкого серого налета (Н-форма, от нем. Hauch - налет). Такое «роение» объясняется большой подвижностью клеток. Некоторые штаммы налета не образуют (О-форма, от нем. ohne Hauch - без налета). Эти штаммы неподвижны, они лишены жгутиков. Отсюда ведет свое начало обычная терминология, принятая в бактериальной серодиагностике; антигены поверхности или вообще тела клетки (соматические) называют О-антигенами, а антигены жгутиков - Н-антигенами. Фимбрии и пили.Поверхность некоторых бактерий покрыта большим числом (от 10 до нескольких тысяч) длинных, тонких прямых нитей толщиной 3-25 нм и длиной до 12 мкм, называемых фимбриями или пилями. Они встречаются как у жгутиконосных видов, так и у форм, лишенных жгутиков. От них следует отличать половые пили, или пили типа F, которые были обнаружены у клеток - доноров Escherichia coli К 12, т.е. у штаммов, содержащих половой фактор F (F +, Hfr). Пили F встречаются только по одной или по две на клетку, они имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм. Хемотаксис.Свободно передвигающиеся бактерии способны к таксисам - направленным движениям, определяемым внешними стимулами. В зависимости от факторов среды, вызывающих направленное движение, говорят о хемотаксисе, аэротаксисе, фототаксисе и магнитотаксисе. Подвижные бактерии реагируют на химические раздражители - скапливаются в одних местах, а других мест избегают. Такая реакция свободно передвигающихся организмов называется хемотаксисом. Скопления бактерий образуются под действием химических факторов следующим образом (рис. 2.39). У форм с перитрихальными жгутиками возможны только два типа двигательного поведения: прямолинейное движение и кувыркание. Последнее прерывает прямолинейную пробежку и изменяет направление пути. Когда бактерия оказывается в среде с градиентом концентрации «привлекающего» ее субстрата (аттрактанта), ее прямолинейное движение длится многие секунды, если она плывет по направлению к оптимальной его концентрации; однако такое движение через несколько секунд прекратится, если бактерия плывет в противоположном направлении. Хотя направление прямолинейного движения после кувыркания оказывается совершенно случайным, тем не менее зависимость длительности такого движения от его направления приводит в конечном результате к накоплению бактерий в области оптимальной концентрации субстрата. За чувствительность к химическому стимулу и за реагирование на него ответственны хеморецепторы. В ряде случаев эти хеморецепторы действуют независимо от способности бактерий утилизировать данный субстрат. Например, некоторые мутанты продолжают совершенно нормально реагировать на определенное питательное вещество, хотя и потеряли способность его использовать. Аэротаксис.У подвижных бактерий можно определить тип метаболизма (аэробный или анаэробный) по их аэротаксическим движениям и скоплению на определенных расстояниях от края покровного стекла. В слое бактерий, помещенных между предметным и покровным стеклами, аэрофильные бактерии скапливаются у края покровного стекла или в непосредственной близости от оказавшихся в препарате пузырьков воздуха; это указывает на их потребность в аэробных условиях и на то, что необходимую энергию они получают за счет дыхания (рис. 2.40). Строго анаэробные бактерии будут скапливаться в центре. Микроаэрофильные бактерии, например некоторые псевдомонады и спириллы, будут держаться на определенном расстоянии от края. С помощью бактерий, проявляющих положительный аэротаксис, Энгельману удалось продемонстрировать выделение кислорода локально освещаемыми хлоропластами зеленой водоросли Spirogyra. Фототаксис. Фототрофным пурпурным бактериям для получения энергии необходим свет. Не удивительно поэтому, что в результате фототаксиса они скапливаются в освещенном месте. Если выдержать в темноте препарат, в котором плотная суспензия клеток Chromatium будет равномерно распределена под покровным стеклом, а затем направить на него сфокусированный пучок света, то бактерии сосредоточатся в области светового пятна. Клетки, попавшие в это пятно случайно в результате своего беспорядочного движения, уже не могут его покинуть. Как только они попадут в темную зону, направление движения жгутиков мгновенно меняется на обратное и клетки возвращаются в освещенное место. Изменение работы жгутиков происходит так быстро, что эта реакция получила название «реакция испуга» (фоботаксис). Впрочем, для того чтобы вызвать такой ответ, достаточно даже небольшого различия в освещенности двух участков. Мелкие клетки Chromatium скапливаются уже в таком месте, где освещенность всего на 0,7% выше, чем в окружающей области. Таким образом, по своей чувствительности к световому контрасту они приближаются к сетчатке человеческого глаза (для которой соответствующий порог равен 0,4%). Магиитотаксис. Из поверхностных слоев донного ила пресноводных водоемов, а также морей были выделены бактерии (палочки, спириллы, кокки), способные ориентироваться в магнитном поле и перемещаться в направлении линий магнитного поля. Они содержат много железа (0,4% сухого вещества) в форме ферромагнитной окиси железа (магнетита), которая находится в гранулах (магнитосомах), расположенных около мест прикрепления жгутиков. Бактерии, выделенные в северном полушарии, «ищут» север; здесь линии магнитного поля проходят под углом около 70° к горизонту вниз, вглубь водоема. Магнитотаксическоё поведение направляет бактерии в глубину ила, где очень мало или вовсе нет кислорода. Так как магнитотаксические бактерии - анаэробы или микроаэрофилы, их реакция на магнитное поле понятна с точки зрения экологии. Такие клетки, завезенные в южное полушарие, в массе своей, конечно, погибнут; выживут лишь немногие «неправильно» поляризованные клетки, которые могут затем размножиться. Полярность, очевидно, генетически не зафиксирована. |