Генотипическая изменчивость. Значение комбинативной изменчивости в обеспечении генетического полиморфизма человечества

Генотипическая изменчивость –изменчивость организма, обусловленная изменением генетического материала клетки или комбинациями генов в генотипе, которые могут привести к появлению новых признаков или к новому их сочетанию.

Изменчивость, возникающая при скрещивании, в результате различных комбинаций генов, их взаимодействия между собой, называется комбинативной. При этом структура гена не меняется.

Механизмы возникновения комбинативной изменчивости:

1) кроссинговер;

2) независимое расхождение хромосом в мейозе;

3) случайное сочетание гамет при оплодотворении.

Комбинативная изменчивость наследуется согласно правилам Менделя. На проявление признаков при комбинативной изменчивости оказывают влияние взаимодействие генов из одной и разных аллельных пар, множественные аллели, плейотропное действие генов, сцепление генов, пенетрантность, экспрессивность гена и т.д.

Благодаря комбинативной изменчивости обеспечивается большое разнообразие наследственных признаков у человека.

На проявление комбинативной изменчивости у человека оказывает влияние система скрещивания или система браков: инбридинг и аутбридинг.

Инбридинг – родственный брак. Он может быть в разной мере тесным, что зависит от степени родства вступающих в брак. Брак братьев с сестрами или родителей с детьми называется первой степени родства. Менее тесный – между двоюродными братьями и сестрами, племянниками с дядями или тетями.

Первое важное генетическое следствие инбридинга – повышение с каждым поколением гомозиготности потомков по всем независимо наследуемым генам.

Второе – разложение популяции на ряд генетически различных линий. Изменчивость инбридируемой популяции будет возрастать, тогда как изменчивость каждой выделяемой линии снижается.

Инбридинг часто ведет к ослаблению и даже вырождению потомков. У человека инбридинг, как правило, вреден. Это усиливает риск заболеваний и преждевременной смерти потомков. Но известны примеры длительного тесного инбридинга, несопровождающегося вредными последствиями, например, родословная фараонов Египта.

Поскольку изменчивость любого вида организмов в каждый данный момент представляет конечную величину, ясно, что число предков в каком-то поколении должно бы превысить численность вида, что невозможно. Отсюда вытекает, что среди предков происходили браки в той или иной степени родства, вследствие чего фактическое число разных предков сокращалось. Это можно показать на примере человека.

У человека за столетие рождается в среднем 4 поколения. Значит, 30 поколений назад, т.е. приблизительно в 1200 году н.э. у каждого из нас должно было быть 1 073 741 824 предка. Фактически же численность в ту пору не достигала 1 млрд. Приходится заключить, что в родословной каждого человека много раз встречались браки между родственниками, хотя в основном настолько отдаленными, что они не подозревали о своем родстве.

На самом деле такие браки встречались гораздо чаще, чем следует из приведенного соображения, т.к. на протяжении большей части своей истории человечество существовало в форме изолированных друг от друга народов и племенных групп.

Поэтому братство всех людей представляет собой действительно реальный генетический факт.

Аутбридинг – неродственный брак. Неродственными особями считаются особи, у которых нет общих предков в 4-6 поколениях.

Аутбридинг повышает гетерозиготность потомков, объединяет в гибридах аллели, которые существовали у родителей порознь. Вредные рецессивные гены, находившие у родителей в гомозиготном состоянии, подавляются у гетерозиготных по ним потомков. Возрастает комбинация всех генов в геноме гибридов и соответственно широко будет проявляться комбинативная изменчивость.

Комбинативная изменчивость в семье касается как нормальных, так и патологических генов, способных присутствовать в генотипе супругов. При решении вопросов медико-генетических аспектов семьи требуется точное установление типа наследования заболевания – аутосомно-доминантный, аутосомно-рецессивный или сцепленный с полом, в противном случае прогноз окажется неверным. При наличии у обоих родителей рецессивного аномального гена в гетерозиготном состоянии вероятность заболевания ребенка – 25%.

Частота синдрома Дауна у детей рожденных матерями 35-летнего возраста – 0,33%, 40-летнего и старше – 1,24%.

Мутационная изменчивость. Теория Х. Де Фриза. Классификация и характеристика мутаций.

Мутационная изменчивость – это такой тип изменчивости, при которой происходит скачкообразное, прерывистое изменение наследственного признака. Мутации – это внезапно возникающие стойкие изменения генетического аппарата, включающие как переход генов из одного аллельного состояния в другое, так и различные изменения структуры генов, числа и структуры хромосом, плазмогенов цитоплазмы.

Термин мутация впервые был предложен Х. де Фризом в его труде «Мутационная теория» (1901-1903). Основные положения этой теории:

1. Мутации возникают внезапно, новые формы вполне устойчивы.

2. Мутации являются качественными изменениями.

3. Мутации могут быть полезными и вредными.

4. Одни и те же мутации могут возникать повторно.

Все мутации делят на группы (Табл. 9). Первостепенная роль принадлежит генеративным мутациям, возникающим в половых клетках. Генеративные мутации, вызывающие изменение признаков и свойств организма, могут быть обнаружены, если гамета, несущая мутантный ген, участвует в образовании зиготы. Если мутация доминантна, то новый признак или свойство проявляются даже у гетерозиготной особи, происшедшей из этой гаметы. Если мутация рецессивная, то она может проявиться только через несколько поколений при переходе в гомозиготное состояние. Примером генеративной доминантной мутации у человека может служить появление пузырчатости кожи стоп, катаракты глаза, брахифалангии (короткопалость с недостаточностью фаланг). Примером спонтанной рецессивной генеративной мутации у человека можно рассматривать гемофилию в отдельных семьях.

Таблица 9 — Классификация мутаций

N п/п Классифицирующий фактор Название мутаций
I По мутировавшим клеткам 1. Генеративные 2. Соматические
II По характеру изменения генотипа 1. Генные (точковые) 2. Хромосомные перестройки (дефишенси, делеции, дупликации и инверсии) 3. Межхромосомные перестройки (транслокации) 4. Геномные мутации (полиплоидия, анеуплоидия) 5. Цитоплазматические мутации
III По адаптивному значению 1. Полезные 2. Вредные (полулетальные, летальные) 3. Нейтральные
IV По причине, вызвавшей мутацию 1. Спонтанные 2. Индуцированные

Соматические мутации по своей природе ничем не отличаются от генеративных, но их эволюционная ценность различна и определяется типом размножения организма. Соматические мутации играют роль у организмов с бесполым размножением. Так, у вегетативно размножающихся плодовых и ягодных растений соматическая мутация может дать растения с новым мутантным признаком. Наследование соматических мутаций в настоящее время приобретает особое значение в связи с изучением причин возникновения рака у человека. Предполагают, что для злокачественных опухолей превращение нормальной клетки в раковую происходит по типу соматических мутаций.

Генные или точковые мутации – это цитологически невидимые изменения хромосом. Генные мутации могут быть как доминантными, так и рецессивными. Молекулярные механизмы генных мутаций проявляются в изменении порядка нуклеотидных пар в молекуле нуклеиновой кислоты в отдельных сайтах. Сущность локальных внутригенных изменений может быть сведена к четырем типам нуклеотидных перестроек:

1. Замена пары оснований в молекуле ДНК:

а) Транзиция: замена пуриновых оснований на пуриновые или пиримидиновых на пиримидиновые;

б) Трансверзия: замена пуриновых оснований на пиримидиновые и наоборот.

2. Делеция (выпадение) одной пары или группы оснований в молекуле ДНК;

3. Вставка одной пары или группы оснований в молекуле ДНК;

4. Дупликация – повтор нуклеотидной пары;

5. Перестановка положения нуклеотидов внутри гена.

Изменения в молекулярной структуре гена ведут к новым формам списывания с него генетической информации, нужной для протекания биохимических процессов в клетке, и приводит к появлению новых свойств в клетке и организме в целом. По-видимому, точковые мутации являются наиболее важными для эволюции.

По влиянию на характер кодируемых полипептидов точковые мутации могут быть представлены в виде трех классов:

1. Миссенс-мутации – возникают при замене нуклеотида внутри кодона и обусловливают подстановку в определенном месте в цепи полипептида одной неверной аминокислоты. Физиологическая роль белка изменяется, что создает поле для естественного отбора. Это основной класс точковых, внутригенных мутаций, которые появляются в естественном мутагенезе под воздействием радиации и химических мутагенов.

2. Нонсенс-мутации – появление внутри гена терминальных кодонов за счет изменения отдельных нуклеотидов в пределах кодона. В результате процесс трансляции обрывается в месте появления терминального кодона. Ген оказывается способным кодировать только обрывки полипептида до места появления терминального кодона.

3. Мутации сдвига рамкичтения возникают при появлении внутри гена вставок и делеций. В этом случае после измененного сайта изменяется все смысловое содержание гена. Это вызывается новой комбинацией нуклеотидов в триплетах, поскольку триплеты после выпадения или вставки приобретают новый состав в силу сдвига на одну пару нуклеотидов. В результате вся цепь полипептида после места точковой мутации приобретает другие неверные аминокислоты.

Хромосомные перестройки возникают в результате разрыва участков хромосомы и их перекомбинаций. Различают:

1. Дефишенси и делеции – нехватка, соответственно концевого и срединного участка хромосомы;

2. Дупликации – удвоение или умножение тех или иных участков хромосомы;

3. Инверсии – изменение линейного расположения генов в хромосоме вследствие переворота на 180˚ отдельных участков хромосомы.

Наши рекомендации