Біологічна дія радіаційного випромінювання

Під впливом іонізаційного випромінювання атоми і молекули жи­вих клітин іонізуються, в результаті чого відбуваються складні фізико-хімічні процеси, які впливають на характер подальшої життєді­яльності людини.

Згідно з одними поглядами, іонізація атомів і молекул, що вини­кає під дією випромінювання, веде до розірвання зв'язків у білкових молекулах, що призводить до загибелі клітин і поразки всього орга­нізму. Згідно з іншими уявленнями, у формуванні біологічних наслідків іонізуючих випромінювань відіграють роль продукти радіолізу води, яка, як відомо, становить до 70% маси організму людини. При іонізації води утворюються вільні радикали Н+ та ОН-, а в присутності кисню — пероксидні сполуки, що є сильними окислювачами. Останні вступають

у хімічну взаємодію з молекулами білків та ферментів, руйнуючи їх, в результаті чого утворюються сполуки, не властиві живому організму. Це призводить до порушення обмінних процесів, пригноблення фер­ментних і окремих функціональних систем, тобто порушення життє­діяльності всього організму.

Вплив радіоактивного випромінювання на організм людини можна уявити в дуже спрощеному вигляді таким чином. Припустімо, що в організмі людини відбувається нормальний процес травлення, їжа, що надходить, розкладається на більш прості сполуки, які потім надходять через мембрану усередину кожної клітини і будуть ви­користані як будівельний матеріал для відтворення собі подібних, для відшкодування енергетичних витрат на транспортування речовин і їхню переробку. Під час потрап­ляння випромінювання на мембрану відразу ж порушуються молекулярні зв'язки, ато­ми перетворюються в іони. Крізь зруйновану мембрану в клітину починають надходи­ти сторонні (токсичні) речовини, робота її порушується. Якщо доза випромінювання невелика, відбувається рекомбінація електронів, тобто повернення їх на свої місця. Молекулярні зв'язки відновлюються, і клітина продовжує виконувати свої функції. Якщо ж доза опромінення висока або дуже багато разів повторюється, то електрони не встигають рекомбінувати; молекулярні зв'язки не відновлюються; виходить з ладу велика кількість клітин; робота органів розладнується; нормальна життєдіяльність організму стає неможливою.

Специфічність дії іонізуючого випромінювання полягає в тому, що інтенсивність хімічних реакцій, індуційованих вільними радикала­ми, підвищується, й у них втягуються багато сотень і тисячі молекул, не порушених опроміненням. Таким чином, ефект дії іонізуючого випро­мінювання зумовлений не кількістю поглинутої об'єктом, що опромі­нюється, енергії, а формою, в якій ця енергія передається. Ніякий інший вид енергії (теплова, електрична та ін.), що поглинається біологічним об'єктом у тій самій кількості, не призводить до таких змін, які спричиняє іонізуюче випромінювання.

Також необхідно відзначити деякі особливості дії іонізуючого ви­промінювання на організм людини:

* органи чуття не реагують на випромінювання;

* малі дози випромінювання можуть підсумовуватися і накопичува­тися в організмі (кумулятивний ефект);

* випромінювання діє не тільки на даний живий організм, але і на його, спадкоємців (генетичний ефект);

* різні організми мають різну чутливість до випромінювання.

Найсильнішого впливу зазнають клітини червоного кісткового мозку, щитовидна залоза, легені, внутрішні органи, тобто органи, клітини яких мають високий рівень поділу. При одній і тій самій дозі випро­мінювання у дітей вражається більше клітин, ніж у дорослих, тому у дітей всі клітини перебувають у стадії поділу.

Небезпека різних радіоактивних елементів для людини визначаєть­ся спроможністю організму їх поглинати і накопичувати.

Радіоактивні ізотопи надходять всередину організму з пилом, по­вітрям, їжею або водою і поводять себе по-різному: *деякі ізотопи роз­поділяються рівномірно в організмі людини (тритій, вуглець, залізо, полоній), * деякі накопичуються в кістках (радій, фосфор, стронцій), *інші залишаються в м'язах (калій, рубідій, цезій), * накопичуються в щитовидній залозі (йод), у печінці, нирках, селезінці (рутеній, полоній, ніобій) тощо.

Ефекти, викликані дією іонізуючих випромінювань (радіації), систе­матизуються за видами ушкоджень і часом прояву. За видами ушкод­жень їх поділяють на три групи: соматичні, соматико-стохатичні (ви­падкові, ймовірні), генетичні. За часом прояву виділяють дві групи —' ранні (або гострі) і пізні. Ранні ураження бувають тільки соматичні. Це призводить до смерті або променевої хвороби. Постачальником таких часток є в основному ізотопи, що мають коротку тривалість життя, y - випромінювання, потік нейтронів.

Гостра форма виникає в результаті опромінення великими дозами за короткий проміжок часу. При дозах порядку тисяч рад ураження організму може бути миттєвим. Хронічна форма розвивається в ре­зультаті тривалого опромінення дозами, що пере­вищують ліміти дози (ЛД). Більш віддаленими наслідками променевого ураження можуть бути променеві катаракти,

* злоякісні пухлини та інше.

Для вирішення питань радіаційної безпеки населення передусім викликають інтерес ефекти, що спостерігаються при малих дозах опро­мінення — порядку декілька сантизиверів на годину, що реально трапля­ються при практичному використанні атомної енергії. У нормах радіа­ційної безпеки НРБУ-97, введених 1998 p., як одиниці часу викорис­товується рік або поняття річної дози опромінення. Це викликано, як зазначалося раніше, ефектом накопичення «малих» доз і їхнього сумар­ного впливу на організм людини.

Існують різноманітні норми радіоактивного зараження: разові, су­марні, гранично припустимі та інше. Всі вони описані в спеціальних довідниках.

ЛД загального опромінення людини вважається доза, яка у світлі /сучасних знань не повинна викликати значних ушкоджень орга­нізму протягом життя.

Форми променевої хвороби: гостра і хронічна.

ГПД для - людей, які постійно працюють з радіоактивними речови­нами, становить 2 бер на рік. При цій дозі не спостерігається соматич­них уражень, проте достовірно поки невідомо, яким чином реалізуються канцерогенний і генетичний ефекти дії. Цю дозу слід розглядати як верхню межу, до якої не варто наближатися.

Радіаційна безпека

Питання захисту людини від негативного впливу іонізуючого випромінювання постали майже одночас­но з відкриттям рентгенівського випромінювання і радіоактивного розпаду. Це зумовлено такими факто­рами: по-перше, надзвичайно швидким розвитком зас­тосування відкритих випромінювань в науці та на прак­тиці, і, по-друге, виявленням негативного впливу випро­мінювання на організм.

Заходи радіаційної безпеки використовуються на підприємствах і, як правило, потребують проведення цілого комплексу різноманітних захисних заходів, що залежать від конкретних умов роботи з джерела­ми іонізуючих випромінювань і, передусім, від типу джерела випромі­нювання.

* Закритими називаються будь-які джерела іонізуючого випромі­нювання, устрій яких виключає проникнення радіоактивних речовин у навколишнє середовище при передбачених умовах їхньої експлуатації і зносу.

Це — гамма-установки різноманітного призначення; нейтронні, бета-і гамма-випромінювачі; рентгенівські апарати і прискорювачі зарядже­них часток. При роботі з закритими джерелами іонізуючого випромі­нювання персонал може зазнавати тільки зовнішнього опромінення.

Захисні заходи, що дозволяють забезпечити умови радіаційної без­пеки при застосуванні закритих джерел, основані на знанні законів поширення іонізуючих випромінювань і характеру їхньої взаємодії з речовиною. Головні з них такі:

> доза зовнішнього опромінення пропорційна інтенсивності випроміню­вання і часу впливу;

> інтенсивність випромінювання від точкового джерела пропорційна кількості квантів або часток, що виникають у ньому за одиницю часу, і обернено Пропорційна квадрату відстані;

> інтенсивність випромінювання може бути зменшена за допомогою

екранів.

З цих закономірностей випливають основні принципи забезпе­чення радіаційної безпеки:

1) зменшення потужності джерел до мінімальних розмірів («захист кількістю»);

2) скорочення часу роботи з джерелом («захист часом»);

3) збільшення відстані від джерел до людей («захист відстанню»);

4) екранування джерел випромінювання матеріалами, що поглинають іонізуюче випромінювання («захист екраном»).

Найкращими для захисту від рентгенівського і гамма-випромінювання є свинець і уран. Проте, з огляду на високу вартість свинцю й урану, Можуть застосовуватися екрани з більш легких матеріалів — просвинцьованого скла, заліза, бетону, залізобетону і навіть води. У цьому випадку, природно, еквівалентна товща екрану значно збільшується.

Для захисту від бета-потоків доцільно застосовувати екрани, які ви­готовлені з матеріалів з малим атомним числом. У цьому випадку вихід гальмівного випромінювання невеликий. Звичайно як екрани для за­хисту від бета-випромінювань використовують органічне скло, пласт­масу, алюміній.

Відкритими називаються такі джерела іонізуючого випроміню­вання, при використанні яких можливе потрапляння радіоактивних речовин у навколишнє середовище.

При Цьому може відбуватися не тільки зовнішнє, але і додаткове внутрішнє опромінення персоналу. Це може відбутися при надходженні радіоактивних ізотопів у навколишнє робоче середовище у вигляді газів, аерозолів, а також твердих і рідких радіоактивних відходів: Джерелами аерозолів можуть бути не тільки виконувані виробничі операції, але і забруднені радіоактивними речовинами робочі поверхні, спецодяг і взуття.

Основні принципи захисту:

> використання принципів захисту, що застосовуються при роботі з джерелами випромінювання у закритому виді;

> герметизація виробничого устаткування з метою ізоляції процесів, що можуть стати джерелами надходження радіоактивних речовин у зовнішнє середовище;

> заходи планувального характеру;

> застосування санітарно-технічних засобів і устаткування, викори­стання спеціальних захисних матеріалів;

> використання засобів індивідуального захисту і санітарної обробки персоналу;

> дотримання правил особистої гігієни;

> очищення від радіоактивних забруднень поверхонь будівельних кон­струкцій, апаратури і засобів індивідуального захисту;

> використання радіопротекторів (біологічний захист).

Радіоактивне забруднення спецодягу, засобів індивідуального захи­сту та шкіри персоналу не повинно перевищувати припустимих рівнів, передбачених Нормами радіаційної безпеки НРБУ-97.

У випадку забруднення радіоактивними речовинами особистий одяг і взуття повинні пройти дезактивацію під контролем служ­би радіаційної безпеки, а у випадку неможливості дезактивації їх слід захоронити як радіоактивні відходи.

Рентгенорадіологічні процедури належать до найбільш ефективних методів діагностики захворювань людини. Це визначає подальше зростання застосування рентгене- і радіологічних процедур або ви­користання їх у ширших масштабах. Проте інтереси безпеки пацієнтів зобов'язують прагнути до максимально можливого зниження рівнів опромінення, оскільки вплив іонізуючого випромінювання в будь-якій дозі поєднаний з додатковим, відмінним від нуля ризиком ви­никнення віддалених ,стохастичних ефектів. У даний час з метою зниження індивідуальних і колективних доз опромінення населення за рахунок діагностики широко застосовуються організаційні і тех­нічні заходи:

• як виняток необгрунтовані (тобто без доведень) дослідження;

• зміна структури досліджень на користь тих, що дають менше дозове навантаження;

• впровадження нової апаратури, оснащеної сучасною електронною технікою посиленого візуального зображення;

• застосування екранів для захисту ділянок тіла, що підлягають дос­лідженню, тощо.

Ці заходи, проте, не вичерпують проблеми забезпечення максималь­ної безпеки пацієнтів і оптимального використання цих діагностичних методів. Система забезпечення радіаційної безпеки пацієнтів може бути повною й ефективною, якщо вона буде доповнена гігієнічними регла­ментами припустимих доз опромінення.

Наши рекомендации