Лекция 2. Структурная организация фотосинтетического аппарата, строение листа как органа фотосинтеза, ультраструктура и онтогенез хлоропластов

«Зеленый лист, или, вернее, микроскопическое зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на земле. Растение — посредник между небом и землею. Оно истинный Прометей, похитивший огонь с неба» ( К. А. Тимирязев ).

Основой фотосинтетического аппарата служат:

− у высших зелёных растений внутриклеточные органеллы – хлоропласты;

− у большинства водорослей − специализированные внутриклеточные органеллы – хроматофоры;

− у фотосинтезирующих бактерий и синезелёных водорослей – тилакоиды (мембраны их содержат пигмент бактериохлорофилл или бактериовиридин, а также др. компоненты реакций фотосинтеза), погруженные в периферические слои цитоплазмы.

Хлоропласты занимают 20–30% объёма растительной клетки. У водорослей, например хламидомонады, имеется один хлоропласт, в клетке высших растений содержится от 10 до 70 хлоропластов и более.

Хлорофилл и каротиноиды, погруженные в тилакоидные мембраны хлоропластов, собраны в функциональные единицы – фотосистемы, каждая из которых содержит примерно 250 молекул пигментов. Фотосистема – совокупность ССК (светособирающего комплекса), фотохимического реакционного центра и переносчиков электрона.

ССК растений расположен в мембранах тилакоидов, у цианобактерий основная его часть вынесена за пределы мембран в прикреплённые к ним фикобилисомы — палочковидные полипептидно-пигментные комплексы, в которых находятся различные фикобилины: на периферии фикоэритрины, за ними фикоцианины и аллофикоцианины, последовательно передающие энергию на хлорофилл a реакционного центра.

Роль ССК состоит в том, чтобы собирать и передавать энергию квантов света на небольшое количество молекул (молекулы-ловушки) реакционных центров П680 и П700 которые и осуществляют фотохимические реакции.

Органом фотосинтеза у высших растений является лист. Кроме фотосинтеза в жизни растений лист выполняет функции газообмена, транспирации, синтеза ряда органических веществ, в том числе и фитогормонов.

Листья, будучи боковыми органами, как правило, имеют более или менее плоскую форму, что способствует созданию максимальной фотосинтезирующей поверхности.

Основной тканью листа является паренхимный комплекс клеток, несущий хлоропласты – мезофилл (греч. mesos – средний и филл) (рисунок 1). Остальные ткани листа обеспечивают работу мезофилла и поддерживают связь с окружающей средой. Покровная ткань (эпидермис) регулирует газообмен и транспирацию, защищает лист от внешних воздействий. Проводящие ткани осуществляют отток и приток веществ, поддерживают нормальное оводнение фотосинтезирующих клеток. Механические ткани совместно с живыми тургесцентными клетками мезофилла и эпидермиса образуют опорную систему листа.

Мезофилл. Представлен клетками основной паренхимы, расположенными между верхним и нижним эпидермисом (исключая механические ткани и проводящие пучки). Состоит из живых клеток, с тонкими оболочками, округлой или слегка вытянутой формы, реже с небольшими выростами. Благодаря многочисленным хлоропластам мезофилл окрашен в зеленый цвет, так называемая хлоренхима листа. Иногда оболочки клетки образуют складки внутрь полости клетки, что увеличивает рабочую поверхность хлоренхимных клеток.

У типичных дорсовентральных листьев мезофилл неоднороден и диффе-ренцирован на столбчатую (палисадную) и губчатую паренхиму.

Лекция 2. Структурная организация фотосинтетического аппарата, строение листа как органа фотосинтеза, ультраструктура и онтогенез хлоропластов - student2.ru

Рисунок 1 – схема строения листа

Клетки столбчатой паренхимы плотно сомкнуты, имеют продолговатую форму и располагаются перпендикулярно к верхней стороне листа. Столбчатый мезофилл может быть однослойный, иногда двуслойный, редко (у светолюбивых растений) многослойный. Основная функция палисадной паренхимы – ассимиляция углекислого газа (фотосинтез). Палисадная ткань располагается в наилучших условиях освещения, непосредственно под верхней эпидермой. Благодаря тому, что ее клетки вытянуты перпендикулярно к поверхности листа, у них имеется возможность регулировать направление и расположение хлоропластов таким образом, чтобы избежать повреждающего действия прямой солнечной радиации на фотосинтезирующий аппарат.

Губчатую паренхиму составляют относительно округлые клетки с большими межклетниками, которые занимают больший объем, чем сами клетки. Рыхлая структура мезофилла обусловливает большую общую площадь поверхности клеток, обращенной к межклетникам. Через крупные межклетники губчатого мезофилла идет газообмен.

Хлоропласты

Форма – овальные тельца длиной 5-10 мкм и диаметром 2-3 мкм. Количество в клетке листа – 15-20, у некоторых водорослей - 1-2 гигантских хлоропласта различной формы. Окраска – зеленая, обусловлена содержанием в хлоропластах хлорофилла.

Хлоропласты – двухмембранные органоиды (рисунок 2). Внутреннее содержимое хлоропластов − строма (матрикс) представляет собой гомогенную среду. Хлоропласты, как и другие органоиды, например, митохондрии, имеют ламеллярное строение, т.е. внутренние структуры органоида образованы инвагинациями внутренней мембраны – ламеллами. В хлоропластах внутренняя мембрана образует уплощенные инвагинации — тилакоиды, которые могут иметь форму дисков и в этом случае называются тилакоидами гран.

Лекция 2. Структурная организация фотосинтетического аппарата, строение листа как органа фотосинтеза, ультраструктура и онтогенез хлоропластов - student2.ru

Рисунок 2 – схема строения хлоропласта:

1 – липидная капля; 2 – зерна крахмала; 3 – наружная мембрана; 4 – грана; 5 – ДНК; 6 – рибосома; 7 – строма; 8 – тилакоид граны; 9 – тилакоид стромы; 10 – внутренняя мембрана

Несколько лежащих друг над другом тилакоидов образуют стопку – грану. Другие тилакоиды, связывающие между собой граны или не контактирующие с ними, называются тилакоидами стромы. При таком строении значительно увеличивается фотоактивная поверхность хлоропластов и обеспечивается максимальное использование световой энергии. В мембранах тилакоидов локализованы зеленые (хлорофиллы), желтые и красные (каротиноиды) пигменты, компоненты редокс-цепей и запасания энергии, участвующие в поглощении и использовании энергии света.

Граны часто имеют форму цилиндров размером 2 мкм, в которых пигментно-липидные слои чередуются с белковыми слоями. Морфологически тилакоиды не гомогенны. На внутренней поверхности их мембран имеются специфические структурные образования, названные Парком квантосомами.

Хлоропласты – системы, способные к автономному синтезу белков. В них присутствуют низко- и высокомолекулярная РНК, специфическая кольцевая ДНК и ферменты, активирующие аминокислоты. Хлоропласты обладают собственными рибосомами.

Функции хлоропластов:

1) осуществление фотосинтеза (основная функция);

2) в хлоропластах происходит вся сложная цепь процессов превращений первичных продуктов фотосинтеза (наращивание углеродной цепи, образование и распад полимерных форм углеводов и др.);

Биохимические системы синтеза и превращения углеводов функционируют в строме хлоропластов. В ней же может откладываться крахмал. В хлоропластах представлен весь набор биохимических систем, участвующих в синтезе АТФ.

Онтогенез хлоропластов. При нормальном освещении пропластиды пре-вращаются в хлоропласты. Сначала они растут, при этом происходит образование продольно расположенных мембранных складок от внутренней мембраны. Одни из них простираются по всей длине пластиды и формируют ламеллы стромы; другие образуют ламеллы тилакоидов, которые выстраиваются в виде стопки и образуют граны зрелых хлоропластов.

Несколько иначе развитие пластид происходит в темноте. У этиолированных проростков происходит в начале увеличение объема пластид – этиопластов, но система внутренних мембран не строит ламеллярные структуры, а образует массу мелких пузырьков, которые скапливаютсяя в отдельные зоны и даже могут формировать сложные решетчатые структуры (проламеллярные тела). В мембранах этиопластов содержится протохлорофилл, предшественник хлорофилла желтого цвета. Под действие света из этиопластов образуются хлоропласты, протохлорофилл превращается в хлорофилл, происходит синтез новых мембран, фотосинтетических ферментов и компонентов цепи переноса электронов.

Наши рекомендации