Роль ядра в передаче наследственной информации
Ядро осуществляет две группы общих функций: одну, связанную собственно с хранением генетической информации, другую – с ее реализацией.
В первую группу входят процессы, связанные с поддержанием информации в виде неизменной структуры ДНК. Важно, чтобы молекулы ДНК передавались из поколения в поколение стабильными, а поскольку это невозможно в силу мутагенеза, существуют репарационные механизмы на молекулярном уровне, т.е. самовосстановление первичной структуры. Существует световая репарация: при облучении видимым светом (УФ) активируется фермент, восстанавливающий первичную структуру ДНК за счет расщепления образовавшихся в мутированной молекуле димеров пиримидиновых оснований.
При темновой репарации происходит вырезание димеров пиримидинов с помощью эндонуклеазы, далее к интактной цепи ДНК присоединяются комплементарные нуклеотиды и цепь сливается лигазами с получением исходной структуры.
Чтобы дочерние клетки при делении (митозе) получили совершенно одинаковые в количественном и качественном отношении объемы генетической информации, в ядре должна пройти редупликация молекул ДНК, что и наблюдается в S-периоде интерфазы.
Во время образования половых клеток происходят рекомбинации генетической информации, что обеспечивает их генетическую разнородность при одинаковом количественном объеме (кроссинговер при редукционном делении).
Далее, в функции ядра входит распределение генетической информации между дочерними клетками, для чего в ядре происходит предварительная компактизация хромосом (выше описана).
Для реализации генетической информации требуется создание собственно аппарата белкового синтеза. Это включает включает синтез на молекулах ДНК разных информационных РНК, транспортных и рибосомных РНК. Кроме того в ядре эукариотических клеток происходит образование субъединиц рибосом путем образования комплексов рибосомных белков и рибосомных РНК, которые затем переходят в цитоплазму и на мембраны ЭПС, где и функционируют. Коллинеарногенетическому коду, через транскрипцию и трансляцию, конечным результатом реализации генетической информации является синтез полипептидных цепей в рибосоме. Такая однонаправленность и универсальность может быть представлена в виде схемы, известной как «центральная догма молекулярной биологии» ДНК:
ДНК → репликация → ДНК → транскрипция → РНК → трансляция → полипептид → эпигенез → белок → признак.
Таким образом, ядро представляет собой не только вместилище генетической информации (хорошо защищенной ядерной мембраной), но и место где этот материал воспроизводится и функционирует. Поэтому выпадение или нарушение любой из перечисленных функций гибельно для клетки в целом. Так, нарушение репарационных процессов будет приводить к изменению первичной структуры белков до несвойственных данной клетке, что проявится в виде патологии или гибели.
Нарушение процессов распределения генетического материала приведет к грубым нарушениям в кариотипе, летальным исходам или наследственным заболеваниям типа синдромов Тернера, Патау, Эдвардса и других с неблагоприятным прогнозом.
На организменном уровне, ведущая роль ядра проявляется и в поддержании гомеостаза. Живой организм, будучи открытой системой, на любом этапе индивидуального развития существует в единстве со средой обитания, при этом, адекватно реагируя на изменяющиеся условия, сохраняет себя как отдельную биологическую систему, Свойство живых форм поддерживать генетическую конструкцию, структурные показатели, постоянство внутренней среды закреплено генетически и сложилось в процессе эволюции. Эффективность механизмов гомеостаза определяется генотипами особей, т.е. опять же, характером генов, молекул ДНК, нормой реакции на изменение окружающей среды. Появление в клетках чужеродной информации, как результат мутаций под влиянием биологических (вирусы, бактерии), химических (пестициды, гербициды и т.д.), физических (радиация УФ и т.д.) воздействий, оказывает отрицательное действие и изменение показателей гомеостаза. Регуляция гомеостаза на клеточном уровне идет при участии ядра, цитоплазматической мембраны, рибосом, АТФ. Клетка содержит цитоплазму, состав которой модулируется избирательной проницаемостью клеточной мембраны и активностью ферментов, они в свою очередь образуются в результате считывания информации с ДНК (с участков ДНК-генов). «Включение» и «выключение» генов контролируется системами индукции и репрессии. В основе регуляции работы генов лежит репрессионно-депрессивный механизм (Жакоб, Моно, 1961г.). У многоклеточных эукариотических организмов роль регуляторов могут выполнять гормоны, которые диффундируют через клеточные мембраны (из межклеточной жидкости) и связываются с белками рецепторами в цитоплазме. Образующиеся комплексы транспортируются в ядро к начальному звену оперона – оператору, после чего со структурных генов транскрибируется про-и-РНК и запускается механизм синтеза белка, включающегося в обмен веществ и , в конечном итоге происходит коррекция в метаболизме и развитие адаптации в изменившихся условиях.