Общие закономерности эмбрионального развития

Эмбриогенез– это цепь сложных взаимосвязанных превращений, приводящих к появлению ногоклеточных организмов, способных существовать во внешней среде.

Наблюдаемые при этом явления сводятся в две группы: процессы дифференцировки и процессы роста.

Процессы дифференцировки представляют собой истинное развитие. Они приводят к появлению клеток, тканей и органов, свойственных организму определенного типа, класса и вида.

Поступательное развитие и дифференцировка клеток зародыша обусловлены дифференциальным действием генов. Это значит, что на ранних этапах эмбриогенеза функционируют активно лишь отдельные гены, затем все большие группы их. При этом происходит строго упорядоченная смена этих активных состояний, запрограммированная самой наследственной основой (генетическая детерминированность – determinatio – ограничение), которая направляет онтогенез по определенному пути. Наследственная же основа сложилась на протяжении многовековой истории развития вида, т.е. всей предшествующей эволюции животных – филогенеза (files – племя). Эту главную закономерность развития Ф. Мюллер и Э. Геккель положили в основу сформулированного ими биогенетического закона (1872 – 1874 г.г.), сущность которого можно выразить в виде простого афоризма: онтогенез есть краткая сжатая форма филогенеза.

Благодаря филогенетическому родству, в раннем эмбриогенезе животные проходят общие этапы, отражающие основные ступени эволюции животного мира:

1) образование зиготы (оплодотворение) – одноклеточный уровень организации живых существ;

2) дробление зиготы – переход на многоклеточный уровень организации;

3) образование зародышевых листков (гаструляция) – переход на многослойный тип строения животных;

4) дифференцировка зародышевых листков с процессами органо- и гистогенеза, в результате которых появляются вначале признаки, присущие типу животного, а затем обнаруживаются постепенно черты, свойственные классу, роду, семейству, виду, породе и, наконец, индивидууму.

В развитии не исключаются факторы взаимного влияния зародышевых зачатков друг на друга (индукция), в силу чего некоторые из них проявляют роль зародышевых организаторов.

Оплодотворение – сложный процесс взаимной ассимиляции яйцеклетки и сперматозоида, вследствие которого образуется новый организм – зигота (zygotes – соединенный вместе). Зигота – это книга наследственности, написанная буквами материнских и отцовских генов. Совмещение двух наследственных основ обеспечивает повышенную жизненность развивающейся особи.

У животных, развитие которых проходит в водной среде, оплодотворение внешнее, а у представителей большинства наземных позвоночных – внутреннее.

Дробление зиготы – это процесс многократного митотического деления зиготы без роста образующихся бластомеров, в результате которого зародыш приобретает простейшую многоклеточную форму, называемую бластулой. Оно может быть полным – голобластическим , при котором дробится вся зигота, и частичным - меробластическим, с раздробленным анимальным только полюсом. Полное дробление, в свою очередь, бывает равномерным и неравномерным.

Гаструляция – этап формирования двухслойного зародыша. Его поверхностный клеточный слой получает название наружного зародышевого листка – эктодермы, глубокий – внутреннего, энтодермы.

У примитивных хордовых животных такой зародыш по своей форме напоминает однокамерный желудок, что и послужило основанием обозначить все разновидности зародышей на этапе формирования зародышевых листков термином гаструла.

Дифференцировка зародышевых листков обеспечивает появление в строго определенной последовательности всего многообразия клеток, тканей и органов животных определенного типа, класса и вида, т.е. полный органо- и гистогенез. При этом всякий раз вначале появляются осевые органы (нервная трубка, хорда и первичная кишка) и третий, средний по положению, зародышевый листок – мезодерма.

Гомеостаз

Гомеоста́з - саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды. Гомеостатические системы обладают следующими свойствами:

  • Нестабильность системы: тестирует, каким образом ей лучше приспособиться.
  • Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.
  • Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Примеры гомеостаза у млекопитающих:

  • Регуляция количества минеральных веществ и воды в теле — осморегуляция. Осуществляется в почках.
  • Удаление отходов процесса обмена веществ — выделение. Осуществляется экзокринными органами — почками, лёгкими, потовыми железами и желудочно-кишечным трактом.
  • Регуляция температуры тела. Понижение температуры через потоотделение, разнообразные терморегулирующие реакции.
  • Регуляция уровня глюкозы в крови. В основном осуществляется печенью, инсулином и глюкагоном, выделяемыми поджелудочной железой.

Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, на которые реагирует система:

  1. Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
    • Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
    • Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).
  2. Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
    • Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.

Внутренняя среда организма включает в себя организменные жидкости — плазму крови, лимфу, межклеточное вещество и цереброспинальную жидкость. Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.

В отношении любого параметра организмы делятся на конформационные и регуляторные. Регуляторные организмы сохраняют параметр на постоянном уровне, независимо от того, что происходит в среде. Конформационные организмы позволяют окружающей среде определять параметр. Например, теплокровные животные сохраняют постоянную температуру тела, тогда как холоднокровные демонстрируют широкий диапазон температур.

Преимущество гомеостатической регуляции состоит в том, что она позволяет организму функционировать более эффективно. Например, холоднокровные животные, как правило, становятся вялыми при низких температурах, тогда как теплокровные почти так же активны, как и всегда. С другой стороны, регуляция требует энергии. Причина, почему некоторые змеи могут есть только раз в неделю, состоит в том, что они тратят намного меньше энергии для поддержания гомеостаза, чем млекопитающие.

Клеточный гомеостаз. Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Авторегуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия некоторых макро- и микроэлементов.

Гомеостаз в организме человека. Разные факторы влияют на способность жидкостей организма поддерживать жизнь. В их числе такие параметры, как температура, солёность, кислотность и концентрация питательных веществ — глюкозы, различных ионов, кислорода, и отходов — углекислого газа и мочи. Так как эти параметры влияют на химические реакции, которые сохраняют организм живым, существуют встроенные физиологические механизмы для поддержания их на необходимом уровне.

Гомеостаз нельзя считать причиной процессов этих бессознательных адаптаций. Его следует воспринимать как общую характеристику многих нормальных процессов, действующих совместно, а не как их первопричину. Более того, существует множество биологических явлений, которые не подходят под эту модель — например, анаболизм.

Наши рекомендации