Полные и редуцированные дыхательные цепи
У бактерий эффективность дыхательной цепи ниже, чем в митохондриях из-за более простого устройства механизма переноса электронов, шунтированием некоторых ΔμН-генераторов дыхательной цепи системами свободного окисления и укорочением цепи при использовании доноров электронов, по редокс-потенциалу более положительных, чем NADH, или акцепторов электронов, более отрицательных, чем кислород.
NADH-дегидрогеназа E.coli содержит два редокс-центра (FMN и FeS-кластер) вместо шести в митохондриях. Существуют бактерии, восстанавливающие нитрат до нитрита. У грибов редокс-цепь для восстановления нитрата выглядит таким образом: NADPH→FAD→FeS→Mo→NO3- .
У других бактерий существуют редокс-цепи восстановления фумарата в сукцинат (редокс-потенциал 0,03 В). У некоторых бактерий синтез АТР сопряжен с образованием метана. Может осуществляться окисление субстратов с положительным редокс-потенциалом. Бактерия Thiobacillus ferrooxidans служит примером энергетики такого типа. В качестве энергетического ресурса она использует ион Fe2+, который окисляется кислородом до окисного железа. Существуют и другие примеры редуцированных дыхательных цепей.
ЛЕКЦИЯ 27
МЕХАНИЗМЫ ОБРАЗОВАНИЯ И ИСПОЛЬЗОВАНИЯ
АТР В ЖИВЫХ СИСТЕМАХ
Представления о механизмах сопряжения окисления и
Фосфорилирования в дыхательной цепи. Хемиосмотическая теория
Митчелла. Электрохимический протонный градиент как форма
Запасания энергии
Долгое время вопрос о механизме преобразования энергии, освобождающейся при переносе высокоэнергетических электронов по цепи окислительных ферментов, оставался неясным. Согласно хемиосмотической теории П. Митчелла (рис. 27.1), сопряжение тканевого дыхания с окислительным фосфорилированием обеспечивается внутренней митохондриальной мембраной, целостность которой обуславливает возникновение движущей силы синтеза АТР-протонного потенциала. В результате происходит перекачивание протонов из матрикса на цитоплазматическую поверхность и создается градиент рН. Движение протонов в обратном направлении (по каналу фактора Fo) ведет к активации АТР-синтазы (фактор F1) и синтезу АТР из АDP и фосфата. Транспорт АТР из матрикса в цитоплазму осуществляется переносчиком – транслоказой. Этот фермент катализирует перенос одной молекулы АТР из матрикса в обмен на одну молекулу АDP, переносимую в матрикс. Нарушение транспорта АDP или фосфата приводит к торможению синтеза АТP.
Рис.27.1. Английский биохимик Питер Деннис Митчелл (родился в Митчеме, в семье служащего Кристофера Гиббса Митчелла и Беатрис Дороти Митчелл, окончил Королевский колледж в Тонтоне и колледж Иисуса Кембриджского университета, в 1978 г. за разработку хемиосмотической теории удостоен Нобелевской премии)
Гипотеза П.Митчелла требует соблюдения ряда условий:
1) внутренняя митохондриальная мембрана должна быть интактна и непроницаема для протонов, направляющихся снаружи внутрь;
2) в результате активности дыхательной цепи ионы водорода поступают в нее изнутри, из матрикса, а освобождаются на наружной стороне мембраны;
3) движение ионов водорода, направленное изнутри наружу должно приводить к их накоплению, вследствие чего между двумя сторонами митохондриальной мембраны возникает градиент рН;
4) необходимы затраты энергии, которая поставляется при переносе электронов по электронтранспортной цепи;
5) синтез АТР поддерживать наличием электрохимического градиента.