Метаболітний рівень регуляції
Метаболічний рівень регуляції забезпечує узгодженість процесів обміну за рахунок зміни концентрації метаболітів. Метаболіти — це низькомолекулярні сполуки, які потрапляють в організм з продуктами харчування або утворюються в результаті послідовних ферментативних перетворень різних сполук. Оскільки основна маса метаболітів утворюється внаслідок ферментативних перетворень, то даний рівень регуляції забезпечується за рахунок заміни активності ферментних систем.
Регуляція активності ферментних систем здійснюється кількома шляхами — за участю специфічних і неспецифічних механізмів та зміни об'єму синтезу ферментів. Перший та другий механізми регуляції включають ізостеричну та аллостеричну взаємодію, а також вплив температури, значення рН, концентрації субстратів та ін. Зміна об'єму синтезу ферментів забезпечується, як правило, за рахунок індукції та репресії.
Зміна концентрації субстратів досягається переважно за рахунок кампартменізації, скоординованості біохімічних перетворень у просторі і часі. Окремі біохімічні перетворення локалізовані на певних ділянках клітин — в органелах, цитоплазмі чи мембранних системах, де і зосереджені відповідні ферментні системи. Синтез білка здійснюється на рибосомах, гліколіз — в цитоплазмі, процеси біологічного окислення — на внутрішній мембрані мітохондрій. Завдяки цьому численні біохімічні перетворення, досить часто зовсім протилежні (роз-
літ
щеплення і синтез), здійснюються одночасно, не заважаючи один одному, тобто за рахунок кампартменізації забезпечується просторова ско-ординованість біохімічних перетворень.
Перебіг біохімічних реакцій у живих організмах здійснюється також у суворій послідовності, внаслідок чого створюється, як правило, ланцюг взаємопов'язаних реакцій, в яких кінцеві продукти одного перетворення можуть бути використані у вигляді вихідних продуктів для наступного перетворення. Так, анаеробне перетворення вуглеводів (гліколіз) включає одинадцять послідовних реакцій, кожна з яких створює умови для перебігу наступної, тобто швидкість кожної з цих реакцій залежить від метаболітів, що утворюються в результаті попередньої. При цьому швидкість процесу гліколізу може регулюватись як певними метаболітами, що утворюються внаслідок даного перетворення, так і кінцевими продуктами гліколізу (молочна кислота може гальмувати утворення вихідного субстрату — глюкозо-6-фосфату).
Регуляція метаболічних реакцій здійснюється за принципом зворотного зв'язку (ретрогальмування). Важлива роль у забезпеченні даного процесу належить мультиферментним комплексам і системам, в яких індивідуальні ферменти організовані так, що продукт попередньої реакції є субстратом наступної. Прикладом може бути піруват-декарбоксилазний комплекс, синтетаза жирних кислот та ін.
Метаболіти, за участю яких забезпечується регуляція швидкості ферментативних перетворень, можуть надходити із зовні з продуктами харчування. Так, синтез білка в гетеротрофних організмах лімітується надходженням незамінних амінокислот.
Регуляція активності ферментних систем може здійснюватись за рахунок зміни концентрації ефекторів (активаторів та інгібіторів) аллостеричних ферментів. Зв'язуючись з аллостеричним центром, ефек-тори можуть кооперативно змінювати конформацію субодиниць, що призводить до зміни просторової орієнтації як усієї молекули ферменту, так і ділянок її, що відповідають за перетворення субстрату (активних центрів), а не спричиняє зміну активності ферменту в бік зниження чи підвищення її. Ефекторами, як правило, є низькомолекулярні метаболіти, іони металів, гормони. Кількість аллостеричних ферментів при ньому не змінюється.
Слід зазначити, що метаболіти можуть виступати і в ролі ізостерич-иих (конкурентних) інгібіторів ферментів.
Активність ферментів значною мірою залежить від зміни умов, в яких проходить ферментативне перетворення. Ферменти досить чутливі до зміни температури, рН середовища, іонної сили тощо.
Регуляція активності ферментних систем може забезпечуватись також за рахунок зміни кількості ферментів. Кількість ферментів у клітині залежить від наявності білків-репресорів, які кодуються геном-регулятором. Залежно від того, в якому стані утворюється бі-
Взаємодія між різними біомолекулами в клітині забезпечує злагодженість та скоординованість біохімічних перетворень, характерних для живих систем. Найсуттєвішим серед інших видів взаємодії є білок — білкова взаємодія.
Даний вид взаємодії сприяє утворенню мультиферментних комплексів, ферментів мультимерів, які забезпечують поетапне перетворення різних субстратів, а також утворення гормон-рецепторних комплексів, що забезпечують дію гормонів пептидної та білкової природи.
Внаслідок білок-ліпідної взаємодії забезпечується структура та функції мембранних систем клітини, визначається рівень біологічної активності мембранно-зв'язаних ферментів, ступінь проникності мембран для різних метаболітів тощо.