Адаптационно-трофическая функция симпатической части автономной нервной системы
Л. А. Орбели и сотр. провели исследование функционального значения симпатической иннервации для скелетных мышц, что позволило ему сформулировать учение об адаптационно-трофическом влиянии симпатической части автономной нервной системы. В этом влиянии было выделено два неразрывно связанных компонента: влияния адаптационные и влияния трофические, лежащие в основе адаптационных.
Под адаптационными понимаются влияния симпатической части автономной нервной системы, в результате которых происходит приспособление органов к выполнению тех или иных функциональных нагрузок. Сдвиги наступают благодаря тому, что симпатические влияния оказывают на органы трофическое действие, которое выражается в изменении скорости протекания метаболических процессов.
В 20-х годах А. Г. Гинецинский, изучая влияние симпатических волокон на скелетную мышцу лягушки, обнаружил, что утомленная до полной неспособности сокращаться мышца начинает отвечать на стимуляцию моторных нервов после раздражения ее симпатических волокон вначале слабыми, а потом все более сильными сокращениями. Оказалось, что при стимуляции симпатических волокон мышца приобретала способность к развитию более сильного напряжения и более длительного его поддержания даже в условиях тетанического возбуждения. В мышце в этот момент происходят укорочение хронаксии, облегчение перехода возбуждения с нерва на мышцу, повышение чувствительности к ацетилхолину, изменение упруговязких свойств и электрической проводимости, повышение потребления кислорода. В миокарде под влиянием раздражения симпатических волокон возникают изменения в потреблении кислорода, содержания гликогена, креатинфосфата, АТФ, актомиозина, РНК, ДНК, фосфолипидов, гуанин-, аденин-, урацилнуклеотидов в активности ряда ферментов.
Эти влияния распространяются не только на мышечную деятельность, но относятся к работе рецепторов, синапсов, различных отделов ЦНС, эндокринных желез, к протеканию безусловных спинномозговых, вазомоторных и дыхательных рефлексов, а также условнорефлекторной деятельности. Эффекты адаптационно-трофического влияния, полученные сначала при раздражении симпатических волокон, полностью воспроизводятся раздражением гипоталамической области. Следовательно, в целом организме адаптационно-трофические влияния могут осуществляться рефлекторно (посредством стимуляции рецепторов чувствительных путей), а также и путем непосредственного раздражения гипоталамических центров, нейроны которых могут возбуждаться образуемыми местно или приносимыми с кровью биологически активными веществами. Таким образом, адаптационно-трофическое влияние симпатической части автономной нервной системы, не являясь пусковым, модулирует функциональную активность того или иного органа — рецепцию, проведение возбуждения, медиацию, сокращение, секрецию и др. и приспосабливает его к потребностям организма.
Изучение физиологических и биохимических механизмов, лежащих в основе регуляторных влияний симпатической части автономной нервной системы на мышечную ткань, показало, что скелетные мышцы позвоночных животных не имеют специальной симпатической иннервации и ее влияния осуществляются за счет медиаторов — адреналина и норадреналина. Медиаторы достигают моторных пластинок и мышечных волокон путем диффузии. Эти вещества восстанавливают и облегчают нервно-мышечную передачу, увеличивают выделение ацетилхолина волокном двигательного нерва. Медиаторы участвуют также в мобилизации энергетических ресурсов клетки, оказывая влияние на различные пути метаболизма через систему цАМФ, способствуют восстановлению функции утомленной мышцы. Катехоламины могут также увеличивать силу мышечного сокращения путем усиления процессов транспорта кальция внутри клетки.
В различных органах симпатические окончания по-разному расположены по отношению к эффекторным клеткам и другим тканевым элементам. Например, в миокарде одни адренергические окончания подходят непосредственно к эндотелию капилляров или их перицитам, другие — к миоцитам органа, третьи иннервируют одновременно и капилляры, и паренхиматозные клетки, четвертые расположены свободно в межклеточном пространстве. Несмотря на такое разнообразие локализации симпатических окончаний, все клетки во всех тканях испытывают их трофическое влияние. Это связано с тем, что, помимо прямых синаптических контактов, существует еще и несинаптическая доставка медиаторов к клеткам эфферентных органов. Следовательно, адаптационно-трофическое влияние симпатической части автономной нервной системы может быть не только прямым, но и косвенным.
Это подтверждается тем, что, во-первых, в период относительного покоя организма в его жидких средах присутствует значительное количество норадреналина, который попадает в межклеточные пространства, лимфу, цереброспинальную жидкость, кровь из адренергических синапсов и содержание его значительно возрастает при нагрузках и чрезвычайных воздействиях на организм. Во-вторых, адаптационно-трофические влияния осуществляются симпатической частью автономной нервной системы еще и через мозговое вещество надпочечников, которое иннервируется ее преганглионарными волокнами. Это вещество выделяет в кровь адреналин и норадреналин, которые при прямом контакте с органами и тканями вызывают такие же эффекты, как и симпатические окончания. В-третьих, норадреналин и адреналин проникают через гематоэнцефалический барьер в гипоталамическую область. Здесь благодаря наличию специфических рецепторов они воздействуют на передний и задний отделы, аденогипофизарную зону гипоталамуса и включают в процесс эндокринные железы. Гормоны этих желез способны влиять не на все виды метаболизма. В-четвертых, симпатические стимулы, поступающие к органу по нервных волокнам или с кровью, содержащей норадреналин и адреналин, изменяя его трофическое состояние, одновременно изменяют уровень чувствительности органа к гормонам. Следовательно, чувствительность органа к биологически активным веществам является еще одной мерой трофического обеспечения органов и тканей.
Учитывая действие циркулирующих в крови медиаторов на клетки, не соприкасающиеся с нервными окончаниями, и роль клеток, связанных с симпатическими волокнами классическими синапсами, можно представить механизм адаптационно-трофических влияний на клеточные популяции следующим образом. Передатчиками влияния симпатического медиатора являются встроенные в мембрану клеток адренорецепторы, аденилатциклаза, цАМФ, цГМФ. Медиатор активирует эту систему посредством первичного контакта со своим рецептором. Например, норадреналин активирует аденилатциклазу через β-адренорецепторы.
Особое значение в механизме адаптационно-трофического действия отводится в настоящее время нейропептидам, к числу которых относятся фрагменты АКТГ, аналоги вазопрессина и окситоцина, либерины, соматостатин, энкефалины, эндорфины, вещество Р, брадикинин, нейротензин, холецистокинин, их производные и другие пептиды. Эти вещества модулируют действие медиаторов на пресинаптическом и постсинаптическом уровне, влияя на их синтез, выведение, инактивацию. Нейропептиды обладают способностью синтезироваться и проникать в нервную клетку и по ее аксонам перемещаться в пресинаптические терминали. Внутриклеточные эффекты ряда пептидов связаны с аденилатциклазной системой.
Адаптационно-трофическая функция убедительно демонстрируется в опытах с хирургическим, химическим, иммунным удалением симпатической части автономной нервной системы.
Тотальная симпатэктомия в условиях покоя не сопровождается значительными расстройствами висцеральных функций, однако симпатэктомированные животные не могут осуществлять физические усилия, с большим трудом оправляются от кровотечений, шока, гипогликемии, плохо переносят перегревание и охлаждение. У этих животных отсутствует проявление характерных защитных реакций и показателей агрессивности: расширение зрачков, тахикардия, повышение притока крови к скелетным мышцам.
В отличие от симпатической влияния парасимпатической части автономной нервной системы на процессы в организме сравнительно ограничены. Они могут сказываться либо непосредственно на исполнительных органах, либо через метасимпатическую часть автономной нервной системы. В первом случае постганглионарный нейрон непосредственно контактирует с эффектом и вызываемое им действие зависит главным образом от прямых влияний центральной нервной системы. Во втором случае преганглионарные парасимпатические волокна оканчиваются на интернейроне или мотонейроне функционального модуля метасимпатической части автономной нервной системы, представляющего общий конечный путь для импульсов, поступающих по блуждающему и тазовому нервам. Здесь они взаимодействуют с импульсами местных метасимпатических сетей.
Центры регуляции висцеральных функций. Координация деятельности всех трех частей автономной нервной системы осуществляется сегментарными и надсегментарными центрами (аппаратами) при участии коры большого мозга. В сложноорганизованном отделе промежуточного мозга — гипоталамической области, находятся ядра, имеющие непосредственное отношение к регуляции висцеральных функций.
Сегментарные центры вследствие особенностей их организации, закономерностей функционирования и медиации являются истинно автономными. В центральной нервной системе они находятся в спинном мозге и в стволе мозга (отдельные ядра черепных нервов), а на периферии составляют сложную систему из сплетений, ганглиев, волокон.
Надсегментарные центры расположены в головном мозге главным образом на лимбико-ретикулярном уровне. Эти интегративные аппараты мозга обеспечивают целостные формы поведения, адаптацию к меняющимся условиям внешней и внутренней среды. Задачей этих аппаратов является организация деятельности функциональных систем, ответственных за регуляцию психических, соматических и висцеральных функций.
Все эти сложные механизмы регуляции деятельности висцеральных органов и систем условно объединены многоэтажной иерархической структурой. Ее базовым, или первым, структурным уровнем являются внутриорганные рефлексы, замыкающиеся в интрамуральных ганглиях и имеющие метасимпатическую природу. Строго говоря, эти ганглии являются низшими рефлекторными центрами. Второй структурный уровень представлен экстрамуральными паравертебральными ганглиями брыжеечных и чревного сплетений. Оба этих низших этажа обладают отчетливо выраженной автономностью и могут осуществлять регуляцию деятельности висцеральных органов и тканей относительно независимо от центральной нервной системы. Центры спинного мозга и ствола представляют третий структурный уровень. Наконец, гипоталамус, ретикулярная формация, лимбическая система, мозжечок, новая кора венчают пирамиду иерархии (четвертый структурный уровень).
Каждый следующий более высокий уровень регуляции определяет и более высокую степень интеграции висцеральных функций. Например, тонус сосудов отдельных органов или областей тела находится под контролем спинальных симпатических центров, в то время как общий уровень артериального давления находится в компетенции сосудодвигательного центра продолговатого мозга. Что же касается участия в целом сердечно-сосудистой системы в общих реакциях организма, координации взаимодействия висцеральных и соматических систем в сложных поведенческих актах, то они координируются и регулируются высшими этажами нервной системы, т. е. верхушкой условной иерархической пирамиды.
Спинальные центры. В шейной и в начале грудной части (последний шейный, I и II грудные сегменты) располагаются тела преганглионарных симпатических нейронов, иннервирующие гладкие мышцы глазного яблока: мышцу, расширяющую зрачок, глазничную часть круговой мышцы глаза, одну из мышц верхнего века (см. рис. 4.18). Это образование спинного мозга носит название спиноцилиарного центра. Вторые нейроны рассматриваемого эфферентного пути лежат в верхнем шейном симпатическом узле, а их постганглионарные волокна заканчиваются в мышцах глаза. Раздражение центра вызывает расширение зрачка (мидриаз), выпячивание глазного яблока (экзофтальм), раскрытие глазной щели. Разрушение центра или перерезка постганглионарных симпатических волокон вызывает возникновение синдрома Бернара—Горнера — сужение зрачка (миоз), западение глазного яблока (энофтальм), сужение глазной щели.
Пять верхних грудных сегментов служат местом локализации симпатических нейронов, иннервирующих сердце и бронхи. Эффекторные нейроны этого пути располагаются в звездчатом ганглии или в узлах пограничного симпатического ствола. Стимуляция этих волокон и клеток вызывает учащение и усиление сердечных сокращений и расширение бронхов.
На уровне всех грудных, а также верхних поясничных сегментов спинного мозга, т. е. на всем протяжении симпатического ядра, расположены нейроны, иннервирующие сосуды и потовые железы. Характерной чертой этих скоплений нейронов является топография клеточных тел и определяемая ею зона иннервации. Поражение клеточных скоплений отдельных сегментов, как и их разрушение, сопровождается исчезновением потоотделения.
Крестцовые отделы спинного мозга занимают парасимпатические нейроны. Их совокупности образуют ряд центров рефлексов мочеиспускания, дефекации, эрекции и т. д. Поражение этих центров ведет к выпадению названных функций.
Стволовые центры. Располагающиеся в продолговатом мозге, мосте и среднем мозге скопления парасимпатических нейронов образуют центры, в которых осуществляется замыкание рефлексов сосания, жевания, глотания, чиханья, кашля, рвоты, слюноотделения, слезотечения, торможения сердечной деятельности, секреции желудочных желез и т. д. Эти влияния передаются исполнительным структурам по волокнам блуждающего, языкоглоточного, лицевого и глазодвигательного нервов.
Расположение этих центров непостоянно, составляющие их группы нейронов небольшие и не различаются морфологически. Кроме того, клетки, управляющие какой-либо определенной функцией, располагаются не всегда вместе и рядом. Следовательно, понятие «центр», означающее функционально связанные совокупности нейронов, расположенные в одном или нескольких структурах ЦНС и обеспечивающие существование целостной реакции организма или регуляцию определенной функции, может использоваться в этом случае с определенными допущениями. В продолговатом мозге в ядрах блуждающего нерва замыкаются рефлексы с аортальной и синокаротидной рефлексогенных зон, рефлекс снижения частоты сердечных сокращений при раздражении интероцепторов брюшной полости (рефлекс Гольца), глазосердечный рефлекс (рефлекс Ашнера).
Часто рефлекторные реакции сердца проявляются сопряженно с изменением сосудистого тонуса, что определяется наличием связей между нейронами, которые регулируют сердечную деятельность и сосудистый тонус. Волокна блуждающего нерва несут импульсы, управляющие деятельностью системы дыхания, пищеварения. Центры, регулирующие работу слюнных желез, осуществляют свое влияние по нервным волокнам, следующим в составе языкоглоточного и лицевого нервов, а центры зрачкового рефлекса и рефлекса аккомодации глаза располагаются в среднем мозге, передних буграх четверохолмия. Импульсы к слезной железе следуют по веточкам лицевого нерва.
Сосудодвигательный центр — морфофункциональное образование продолговатого мозга, играющее ведущую роль в поддержании тонуса сосудов и регуляции кровяного давления. Он координирует и деятельность спинномозгового симпатического центра, посылающего сосудосуживающие импульсы к сосудистой стенке. Тонус сосудодвигательного центра и, следовательно, уровень общего артериального давления регулируется импульсами, возникающими в сосудистых рефлексогенных зонах. Сосудодвигательный центр входит в состав ретикулярной формации продолговатого мозга и поэтому получает многочисленные коллатеральные возбуждения от всех специфических проводящих путей, что постоянно поддерживает его в состоянии тонического возбуждения.
В ответах всего организма сосудодвигательный центр выступает в качестве исполнительного органа, через который в значительной мере реализуются супрабульбарные влияния на гемодинамику. Влияние самого центра осуществляется через спинной мозг, периферические симпатические образования, блуждающие нервы и обусловливает преимущественно системные изменения гемодинамики. Считают, что в любых случаях нейрогенная гипертензия обусловлена стойким повышением возбудимости бульварных сосудосуживающих структур.
Рефлекторные процессы в ядерных образованиях спинного, продолговатого, среднего мозга и моста находятся под постоянным влиянием гипоталамуса.
Гипоталамические центры. Гипоталамусу принадлежит ведущая роль в осуществлении многих функций целого организма и прежде всего постоянства внутренней среды. В нем осуществляется интеграция и приспособление различных висцеральных систем к целостной деятельности организма.
В гипоталамусе принято различать три нерезко ограниченные области скопления ядер: переднюю, среднюю и заднюю. Гипоталамус обладает хорошо развитой сложной системой афферентных и эфферентных путей, а также тесно связан со структурами головного мозга — таламусом, лимбической системой, ретикулярной формацией ствола мозга. Особое значение имеют обширные сосудистые и нервные связи с гипофизом, в результате чего осуществляется интегрирование нервной и гуморальной регуляции висцеральных функций. Гипоталамусом она осуществляется двумя путями: парааденогипофизарным (минуя аденогипофиз) и трансаденогипофизарным (через аденогипофиз). Такие многочисленные связи гипоталамуса с другими образованиями мозга способствуют генерализации возбуждения, возникающего в его нейронах. Возбуждение в первую очередь распространяется на лимбические структуры мозга и через ядра таламуса на передние отделы коры большого мозга. Результаты раздражения структур гипоталамуса определяются его контактами с ретикулярной формацией, симпатическими и парасимпатическими центрами, а также усилением секреции гормонов гипофиза, действующих непосредственно или опосредованно через другие эндокринные железы. Следовательно, при стимуляции гипоталамуса возникают сложные реакции, в которых нервный компонент дополняется гормональным. Регуляция гипоталамо-гипофизарной системой висцеральных функций осуществляется по принципу обратной связи.
Активация гипоталамических ядер зависит не только от поступления к ним возбуждающих влияний из других структур нервной системы, но и избирательной чувствительности их клеток к содержанию тех или иных веществ в крови, изменению температуры крови. Например, гипоталамические нейроны чувствительны к малейшим отклонениям рН крови, напряжению О2, СО2, содержанию ионов, особенно калия и натрия. В супраоптическом ядре имеются клетки, избирательно чувствительные к изменению осмотического давления крови, в вентромедиальном ядре — к содержанию глюкозы, в переднем гипоталамусе — половых органов. Таким образом, клетки гипоталамуса наряду с другими свойствами выполняют рецепторные функции, воспринимая нарушения гомеостаза. Они обладают способностью трансформировать гуморальные изменения внутренней среды в нервный процесс. Кроме того, они могут избирательно активироваться нервными импульсами из соответствующих органов.
При стимуляции гипоталамуса возникает комплекс сложных реакций, в которых нервный компонент дополняется гормональным. Так, раздражение ядер задней группы характеризуется эффектами, аналогичными раздражению симпатической части автономной нервной системы — расширяются зрачки и глазная щель, возрастает частота сердечных сокращений, повышается кровяное давление, тормозится двигательная активность пищеварительного тракта, в крови возрастает концентрация адреналина и норадреналина. Разрушение этой области приводит к гипергликемии, ожирению, нарушению терморегуляции.
Раздражение ядер передней группы сопровождается реакциями, подобными в определенной мере раздражению парасимпатической части автономной нервной системы, — сужением зрачков и глазных щелей, урежением частоты сердечных сокращений, снижением артериального давления, усилением двигательной активности желудочно-кишечного тракта. Ядра этой группы участвуют в механизме терморегуляции.
Функция ядер средних групп состоит преимущественно в регуляции метаболизма. Разрушение, например, вентромедиальных ядер сопровождается повышением потребления пищи (гиперфагия) и ожирением, двустороннее разрушение латеральных ядер, напротив, приводит к полному отказу от пищи. Эти показатели явились основанием расценивать вентромедиальные ядра как структуры, связанные с насыщением, а латеральные ядра — с голодом. Наибольшую потребность в воде (полидипсия) регистрировали при раздражении паравентрикулярного ядра гипоталамуса. При хронической стимуляции ядер этой группы у животных возникают атеросклеротические изменения сосудов.
Стимуляция ядер гипоталамуса независимо от того, к какой топографической группе они относятся, непременно сопровождается сложными гормональными реакциями: увеличиваются выделение тропных гормонов передней доли гипофиза, секреция задней доли. В ответных реакциях организма при раздражении разных областей гипоталамуса участвуют практически все висцеральные органы, изменяются поведенческие реакции, эмоциональная деятельность целого организма. Используя нейротропные препараты, можно избирательно блокировать гипоталамические механизмы формирования состояния голода, жажды, аппетита, страха, половых и агрессивно-оборонительных реакций.
Гипоталамус связан прямыми нервными путями и через ретикулярную формацию ствола мозга с подкорковыми ядрами, мозжечком, корой больших полушарий. Его деятельность постоянно контролируется высшими центрами ЦНС. Гипоталамус занимает ведущее место в регуляции функций организма и прежде всего постоянства внутренней среды. Под его контролем находится функция автономной нервной системы и эндокринных желез.
Лимбическая система. Связь функций лимбической системы с работой внутренних органов послужила основанием для обозначения совокупности ее структур термином «висцеральный мозг».
Лимбическая система обеспечивает взаимодействие экстероцептивных (обонятельных, слуховых и др.) и интероцептивных воздействий. Она регулирует висцерально-гормональные функции, направленные на обеспечение различных форм деятельности, таких, как пищевое, сексуальное, оборонительное поведение, регулирует системы, обеспечивающие сон и бодрствование, внимание, эмоциональную сферу, процессы памяти, осуществляя, таким образом, соматовисцеральную интеграцию.
Мозжечок. Наряду с регуляцией двигательной соматической сферы мозжечок контролирует течение висцеральных процессов. При его раздражении могут быть воспроизведены практически все реакции, возникающие при возбуждении симпатической нервной системы — расширение зрачка, сужение сосудов, сокращение волосяных мышц, учащение сердечного ритма. После удаления мозжечка возникает угнетение периодической моторной деятельности пищеварительного тракта, секреторной функции кишечных желез и т. д. Это указывает на то, что мозжечок благодаря наличию активирующего и тормозного механизмов может оказывать в целом организме стабилизирующее влияние на деятельность висцеральных органов посредством корригирования висцеральных рефлексов.
Ретикулярная формация. Основной ролью ее нисходящей части по отношению к деятельности автономной нервной системы является повышение активности нервных центров, связанных с висцеральными функциями. Ретикулярная формация оказывает на них тонизирующее влияние, обеспечивая высокий уровень их активности. Проводником этих влияний на периферию является симпатическая часть автономной нервной системы. В поддержании активности ретикулярных механизмов значительную роль играют гуморальные раздражения, по отношению к которым она обладает высокой чувствительностью. Сами же функциональные влияния ретикулярной формации сказываются и на эндокринном компоненте регуляции поведения висцеральных систем. Действительно при стимуляции ретикулярной формации среднего и промежуточного мозга усиливается выброс гипофизарных гормонов, а при нарушении этих ретикулярных образований возникают эндокринные расстройства.
Кора большого мозга. Еще в середине прошлого столетия благодаря исследованиям В. Я. Данилевского, В. М. Бехтерева, Н. А. Миславского стало известно, что раздражение или выключение отдельных участков коры большого мозга влечет за собой изменение состояний внутренних органов. При этом могли быть зарегистрированы противоположные по направленности изменения висцеральных функций типа повышения или снижения кровяного давления, усиления или ослабления моторной активности органов пищеварения.
У человека раздражение коры кзади от центральной (роландовой) борозды и вблизи латеральной (сильвиевой) борозды вызывает ощущение тошноты, рвоты, возникают позывы на дефекацию. Раздражение точек в теменных и других долях сопровождается изменением сердечной деятельности, артериального давления, дыхательного ритма, слюноотделения, желудочной и кишечной моторики.
Особое значение в регуляции функций в настоящее время придается лобным долям коры большого мозга, поскольку при их стимуляции можно зарегистрировать изменение практически всех висцеральных процессов. Именно из-за этого передние отделы больших полушарий считаются высшими центрами автономной иннервации. Однако наряду с этим существует определенная специализация некоторых полей коры. Так, в ее двигательных областях находится представительство тех висцеральных органов, деятельность которых связана со скелетно-мышечной активностью. Посредством такой организации достигается необходимая для нормальной жизнедеятельности интеграция соматических и висцеральных процессов.
Исследования В. Н. Черниговским интероцепции и представительства в коре большого мозга висцеральных систем показали, что в определенных условиях информация о работе внутренних органов может достигать высших отделов ЦНС. Тем самым было экспериментально подтверждено выдвинутое И. П. Павловым понятие о корковом представительстве интероцептивного анализатора.
Известно, что в определенных условиях у человека гипнотическим внушением можно вызвать изменение сердечного ритма, вазоконстрикцию и вазодилатацию, усиление поте- и мочеотделения, изменение метаболизма.
К. М. Быков обосновал возможность образования висцеральных условных рефлексов влиянием коры большого мозга на деятельность внутренних органов. Это легло в основу концепции существования кортико-висцеральных отношений. Сейчас они рассматриваются не более как способы модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внутренней среды организма.