А) пенентрантность Б) экспрессивность

Число: 2054

В) генокопии Г) фенокопии

В идеале каждому генотипу должен соответствовать строго определенный генотип. Однако такое однозначное соответствие встречается сравнительно редко. Для количественного описания неоднозначного соответствия фенотипа генотипу выдающийся российский генетик Н.В. Тимофеев-Ресовский ввел понятия экспрессивности и пенетрантности генов.

Экспрессивностью называется степень выраженности рассматриваемого признака у организмов с одинаковым генотипом. Экспрессивностью характеризуется конкретная особь. Например, у дрозофил с генотипом eyey (eyeless – безглазые) уменьшено число глазных фасеток, но абсолютное число фасеток варьирует от 0 до 50% от нормы (779 фасеток). Тогда экспрессивность аллеля ey при полном отсутствии фасеток у особи равна 100%, а у особи с числом фасеток, уменьшенным в два раза, – 50%.

Пенетрантностью проявления гена называется отношение числа особей, у которых проявляется данный признак, к общему числу с данным генотипом. Пенетрантностью характеризуется признак в однородной группе особей. При полной пенетрантности (100%) мутантный ген проявляет свое действие у всех особей, имеющих его, а при неполной – лишь у некоторых. Например, у дрозофилы доминантная мутация Lobe (L) вызывает уменьшение размера глаз, однако этот признак проявляется только у 75% осо­бей; у остальных 25% мух – носителей гена L – глаза нормальные. Тогда пенетрантность аллеля Lравна 75%.

Экспрессивность и пенетрантность часто зависят от условия среды, в которой развивается организм: освещения, температуры или влажности.

Пример 1. У дрозофилы с генотипом vgvg (vestigial – остаточный) крылья недоразвитые, зачаточные, но эта мутация сильнее проявляется при пониженной температуре. (Примечание. Аллель vestigial обладает плейотропным действием: при­водит к редукции крыльев, но также к модификации галтеров, изменению положения определенных щетинок на дорсальной стороне тела, снижению плодовитости и продолжительности жизни и другим отличиям мутантных мух от нормальных. Однако из этого не следует, что ген vestigial в равной мере может считаться и геном щетинок, и геном плодовитости и т. д.)

Пример 2. У примулы известен ген окраски цветка, действие которого зависит от температуры. При температуре 30…35° и высокой влажности цветки примулы оказываются белыми, а при низкой температуре – красными.

Пример 3. У кроликов фенотипическое проявление гена Ch при нормальной температуре (~ 20°) выражается в том, что при общей белой окраске уши, нос, кончики лап и хвост оказываются черными (такая окраска называется горностаевой, или гималайской). При температуре выше 30° окраска кроликов оказывается сплошь белой. Если же любой участок тела, на котором выщипана белая шерсть, систематически охлаждать, то на нем вырастает черная шерсть.

Пример 4. У пшеницы (и многих других растений) хорошо известны озимые и яровые формы. Озимые формы, посеянные весной, обычно растут, кустятся, но не переходят к колошению, т. е. не развиваются. Если же семена озимых форм перед весенним посевом подвергнуть на протяжении определенного времени действию пониженных температур при определенной влажности (яровизация), то растения будут развиваться по яровому типу и перейдут к плодоношению.

В рассмотренных примерах экспрессивность аллелей зачаточных крыльев у дрозофилы, белой окраски цветков у примулы, горностаевой (гималайской) окраски у кроликов, типа развития у злаков зависит от температуры. В других случаях пенетрантность и экспрессивность определяются генами-модификаторами, которые создают генотипическую среду для проявления гена. Значение генетических факторов в определении характера проявления признаков доказывается эффектом отбора в линиях с не полностью пенетрантными генами. Можно получить линии как с резко сниженной пенетрантностью по сравнению с исходной линией, так и со 100%-ной пенетрантностью.

Таким образом, в фенотипе никогда не реализуются все генотипические возможности, т. е. фенотип каждой особи есть лишь частный случай проявления ее генотипа в определенных условиях развития. Формирование различных вариантов признака на основе одного и того же генотипа называется поливариантностью онтогенеза.

Фенокопии и генокопии

Довольно часто при реализации разных генотипов могут возникать сходные фенотипы: фенокопии и генокопии.

Термин «фенокопия» употребляется в том случае, если рассматриваются «дикий» и мутантный генотипы. Корректное применение термина «фенокопия» предполагает, что для одного генотипа данный результат считается нормальным, а для другого – аномальным. Фенокопии – это, в сущности, морфозы и тераты. Они не наследуются, но наследуетсяпредрасположенность к образованию фенокопий.

Пример 1. У насекомых темная окраска тела может быть обусловлена генетически. Однако при низких температурах появляются меланистические формы и у насекомых с генотипом, который при в стандартных условиях дает обычную окраску. Тогда морфоз «темное тело» является фенокопией мутации «темное тело».

Пример 2. Яровой тип развития у злаков обусловлен определенным генотипом. Яровизация озимых злаков обусловлена воздействием внешних факторов. Тогда развитие озимых злаков по яровому типу является фенокопией наследственно яровых форм.

Примеры фенокопий у дрозофилы (по И.А. Рапопорту):

Термин «генокопия» используется, если рассматривается два и более мутантных генотипа. Например, у дрозофилы ярко-красную окраску глаз обеспечивают мутации в разных генах: v, cn, st, cd. Тогда дрозофилы с разными генотипами, но ярко-красными глазами будут генокопиями друг друга.

Механизмы возникновения генокопий различны. Например, цепочка превращений исходного вещества в конечный продукт X→Y→Z может быть прервана в результате мутаций в гене A, контролирующем переход X→Y, или в гене B, контролирующем переход Y→Z.

Генокопии - сходное фенотипическое проявление разных генов. Примером являются разные формы гемофилии: А, В, С.

Фенокопии - это не наследственные изменения фенотипа организма, под действием внешней среды и копирующие проявление наследственного изменения. Например, рахит, вызванный дефицитом витамина Д и наследственное заболевание витамин Д — резистентный рахит; катаракта глаз в связи с болезнью матери коревой краснухой и как наследственным заболеванием.

35. Сцепленное наследование: аутосомная, полное, частичное.

Аутосомное наследование (autosomal inheritance) [греч. autos — сам и soma — тело] — независимое от пола (не сцепленное с полом) наследование какого-либо признака (см. такжеАутосома).

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах,- называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

частично сцепленное с полом наследование: аллели изучаемого гена находятся в гомологичных друг другу участках Х-хромосомы и Y-хромосомы;

Наши рекомендации