Кетоновые тела. Биологическая роль.

Липиды. Общая характеристика и классификация

Липиды - это жироподобные вещества, нерастворимые в воде, но растворимые в жироподобных веществах. Липиды делятся на простые и сложные.

Простые: 1.Триглицериды – это сложные эфиры 3-атомного спирта глицерина и высших жирных кислот. 2. Воски – сложные эфиры 1- или 2-атомных спиртов и высших жирных кислот. 3.Стириды-являются сложными эфирами, циклических спиртов и высших жирных кислот.

Сложные: сложные эфиры жирных кислот со спиртами, в которые включены и иные группы. 1. Фосфолипиды. В этих жирах кроме жирных кислот и спирта включены и следы фосфорной кислоты, азотистые компоненты, а также сфинголипиды и глицерофосфолипиды. 2. Гликолипиды 3. Стероиды 4. Иные сложные жиры: аминолипиды, сульфолипиды, а также липопротеины.

Кетоновые тела. Биологическая роль.

Кето́новые тела́ — группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА

[2]:

В печени часть жирных кислот превращается в кетоновые тела, которые окисляются мозгом, нервной тканью, мышцами, обеспечивая достаточное количество энергии для синтеза АТФ и уменьшая потребление глюкозы. К кетоновым телам относят β – гидроксибутират, ацетоацетат и ацетон. Первые две молекулы могут окисляться в тканях, обеспечивая синтез АТФ. Ацетон образуется только при высоких концентрациях кетоновых тел в крови и, выделяясь с мочой, выдыхаемым воздухом и потом, позволяет организму избавляться от избытка кетоновых тел.

3) !!!Реакции цикла трикарбоновых кислот!!!

1) Необратимая реакция конденсацииацетил-КоА со щавелевоуксусной кислотой (оксалоацетатом), катализируемая ферментом цитратсинтетазой, с образованием лимонной кислоты (цитрата).

2) Обратимая реакция изомеризациялимонной кислоты (цитрата) в изолимонную кислоту (изоцитрат), в процессе которой происходит перенос гидроксигруппы к другому атому углерода, катализируется ферментом аконитазой.

Реакция идёт через образование промежуточного продукта
цис-аканитовой кислоты (цис-аконитата).

3) Необратимая реакция окислительного декарбоксилированияизолимонной кислоты .Восстановленная форма НАДН∙Н поступает в дыхательную цепь, там окисляется до НАД+, что приводит к образованию 2 молекулАТФ.

4) Обратимая реакция окислительного декарбоксилирования
α-кетоглутаровой кислоты до макроэргического соединения сукцинил-КоА. Реакцию катализирует фермент 2-оксоглутаратдегидрогеназный комплекс.

5) Реакция является единственной в цикле реакцией субстратного фосфорилирования; катализируется ферментом сукцинил-КоА-синтетазой. В этой реакции сукцинил-КоА при участии гуанодиндифосфата (ГДФ) и неорганического фосфата (H3PO4) превращается в янтарную кислоту (сукцинат).

!!! Одновременно происходит синтез макроэргического соединения ГТФза счётмакроэргической связитиоэфирной связисукцинил-КоА.

6) Реакция дегидрированияянтарной кислоты (сукцината) с образованием фумаровой кислоты(фумарата).

7) Реакция гидратациифумаровой кислоты (фумарата) до яблочной кислоты (малата). Реакция катализируется ферментом фумаразой.

8) Реакция дегидрированияяблочной кислоты до щавелеуксусной кислоты (оксалоацетата). Реакция катализируется ферментом НАД+-зависимой-малатдегидрогеназой.

4) Переваривание липидов в желудочно-кишечном тракте. Роль желчных кислот.

В полости рта липиды подвергаются лишь механической обработке. В желудке имеется небольшое количество липазы, которая гидролизует жиры. Малая активность липазы желудочного сока связана с кислой реакцией содержимого желудка. Кишечник является основным местом переваривания липидов. В двенадцатиперстной кишке на липиды воздействует желчь печени и сок поджелудочной железы, одновременно происходит нейтрализация кишечного содержимого (химуса). Происходит эмульгирование жиров под действием желчных кислот.

5) Пути обмена ацетил-КоА.

Кетоновые тела. Биологическая роль. - student2.ru

6) Строение и функции биологических мембран. Роль липидов и белков в построении мембран.

Биологические мембраны представляют со­бой «ансамбли» липидных и белковых молекул, удерживаемых вместе с помощью нековалент-ных взаимодействий.

Основу мембраны составляет двойной липидный слой,в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофиль­ные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы «ра­створены» в липидном бислое.

Мембранные липиды — амфифильные (амфипатические) молекулы, т.е. в молекуле есть как гидрофильные группы (полярные «головки»), так и алифатические радикалы (гидрофобные «хвосты»), самопроизвольно формирующие бислой. В большинстве эукариотических клеток они составляют около 30-70% массы мембраны. В мембранах присутствуют липиды трёх главных типов — фосфолипиды, гликолипиды и холестерол.

7) Дыхательная цепь. биологическое значение окислительного фосфорилирования.

Дыхательная цепь – это комплекс оксидоредуктаз, участвующих в переносе протонов и электронов от окисляемого субстрата к кислороду. Дыхательная цепь локализована в кристах митохондрий.

Дыхательная цепь включает 4 группы ферментов:

1. Пиридинзависимые дегидрогеназы – коферментом является НАД, НАДФ. 2. Флавинзависимые дегидрогеназы – коферментом является ФАД, ФМН. 3. Коэнзим Q . 4. Цитохромы b, c, a, a3.

Биологическое окисление – процесс окисления биологических веществ с выделением энергии. Тканевое дыхание – процесс поглощения кислорода (О2) при окислении органического субстрата с выделением углекислого газа (СО2) и воды (Н2О). Окислительное фосфорилирование – синтез АТФ при тканевом дыхании.

8) Строение и функции липопротеидов различной плотности.

Липопротеины - это сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из триглицеридов (ТРГ) и эфиров холестерина (ЭХС) и амфифильную оболочку, в составе которой - фосфолипиды, гликолипиды и белки.
Основная роль липопротеинов - транспорт липидов, поэтому обнаружить их можно в биологических жидкостях.
При изучении липидов плазмы крови оказалось, что их можно разделить на группы, так как они отличаются друг от друга по соотношению компонентов. У разных липопротеинов наблюдается различное соотношение липидов и белка в составе частицы, поэтому различна и плотность.
Липопротеины разделяют по плотности. Различают следующие группы липопротеинов:
1) хиломикроны;
2) ЛПОНП (липопротеины очень низкой плотности);
3) ЛПП (липопротеины промежуточной плотности);
4) ЛПНП (липопротеины низкой плотности);
5) ЛПВП (липопротеины высокой плотности).

9) Регуляция липидного обмена. Роль гормонов.

На состояние липидного обмена влияют многие физиологические факторы, в том числе калорийность рациона, интенсивность физической нагрузки.

Нервная регуляция липидного обмена подтверждается тем, что жировая ткань богато иннервирована.

Эндокринная регуляция осуществляется гормонами гипофиза (липотропин, соматостатин), щитовидной железы (тироксин), надпочечников (адреналин, глюкокортикоиды), поджелудочной железы (инсулин, глюкагон), половых желез (андрогены и эстрогены).

Инсулин активирует синтез ТАГ из глюкозы (липогенез) за счёт активации фермента ацетил - КоА – карбоксилазы. Одновременно инсулин обладает антилиполитическим действием (тормозит липолиз).

Большинство других гормонов, участвующих в регуляции липидного обмена, угнетают липогенез, и в большей степени активирует липолиз. Так, гормоны адреналин и глюкагон активируют ТАГ – липазу, а глюкокортикоиды индуцируют синтез ТАГ - липазы.

10) Холестерин. биологическое значение.

Холестери́н — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов, за исключением грибов и безъядерных (прокариоты).

Холестерин в составе клеточной плазматической мембраны играет роль модификатора бислоя, придавая ему определённую жёсткость за счёт увеличения плотности «упаковки» молекул фосфолипидов. Таким образом, холестерин — стабилизатор текучести плазматической мембраны[5].

Холестерин открывает цепь биосинтеза стероидных половых гормонов и кортикостероидов[6], служит основой для образования желчных кислот и витаминов группы D[7][8], участвует в регулировании проницаемости клеток и предохраняет эритроциты крови от действия гемолитических ядов[7][8].

11) !!!Мобилизация жиров и окисление жирных кислот в тканях !!!

Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической работе. Гидролиз внутриклеточного жира осуществляется под действием фермента гормончувствительной липазы - ТАГ-липазы. Этот фермент отщепляет одну жирную кислоту у первого углеродного атома глицерола с образованием диацилглицерола, а затем другие липазы гидролизуют его до глицерола и жирных кислот, которые поступают в кровь. Глицерол как водорастворимое вещество транспортируется кровью в свободном виде, а жирные кислоты (гидрофобные молекулы) в комплексе с белком плазмы - альбумином.

12) АТФ. Пути образования. биологическое значение.

Аденозинтрифосфат или сокращенно АТФ – это универсальное энергетическое вещество организма. АТФ – нуклеотид, в состав молекулы которого входят азотистое основание – аденин,углевод –рибозаи три остаткафосфорной кислоты.

Главными потребителями энергии АТФ в организме являются

· реакции синтеза;

· мышечная деятельность;

· транспорт молекул и ионов через мембраны.

АТФ находится в центре обменных процессов в клетке, являясь связующим звеном между реакциями биологического синтеза и распада. Роль АТФ в клетке можно сравнить с ролью аккумулятора, так как в ходе гидролиза АТФ выделяется энергия, необходимая для различных процессов жизнедеятельности ,а в процессе фосфорилирования АТФ вновь аккумулирует в себе энергию.

За счет выделяющейся при гидролизе АТФ энергии происходят почти все процессы жизнедеятельности в клетке и организме: передача нервных импульсов, биосинтез веществ, мышечные сокращения, транспорт веществ и др.

Наши рекомендации