Микротрубочки, реснички и центриоли. 5 страница
Хрящевая ткань
Хрящевые ткани входят в состав органов дыхательной системы, ушной раковины, суставов, межпозвоночных дисков. Особенностями хрящевой ткани являются сравнительно низкий уровень метаболизма, отсутствие сосудов, способность к непрерывному росту, прочность и эластичность (способность к обратимой деформации). Развивается хрящевая ткань из мезенхимы.
Классификация хрящевых тканей основана, главным образом, на особенностях строения и биохимического состава их межклеточного вещества. Выделяют три вида хрящевых тканей:
1) гиалиновый хрящ;
2) эластический хрящ;
3) волокнистый хрящ.
На строении различных видов хрящевой ткани мы не останавливаемся по той причине, что в глазном яблоке и глазнице эта ткань не представлена. Формирование хрящеподобной ткани обнаруживается при опухолевых заболеваниях слезной железы (смешанная опухоль) и развитии врожденной внутриглазной опухоли — ме-дуллоэпителиоме. Исключительно редко в глазнице развиваются опухоли из хрящевой ткани (хондромы). Возможность развития подобных новообазований связывают с метапластически-ми изменениями соединительнотканных образований орбиты или гетеротопическим расположением в орбите хрящевой ткани. В результате аномального развития мягкотканных образований орбиты возможно возникновение у детей врожденной опухоли — хордомы.
Нередко хрящевая ткань используется как трансплантат в офтальмохирургии при формировании культи для глазного протеза после экзентерации орбиты. Именно из-за низкой проницаемости матрикса хряща для макромоле-
Ткани
кул, отсутствия кровеносных сосудов он относительно инертен в иммунологическом отношении и благодаря этому считается удачным объектом для трансплантации. В последние годы с целью получения хрящевых трансплантатов разработаны методы тканевой инженерии, позволяющие выращивать хрящевые фрагменты нужных размеров с необходимыми механическими свойствами в искусственных строго контролируемых условиях.
Костная ткань
Костная ткань участвует в формировании костных стенок глазницы. Она является вариантом соединительной ткани, отличающейся исключительно выраженным развитием межклеточного вещества (волокон и основного вещества), которое подвергается оссификации путем отложения солей кальция. Не вдаваясь в подробности классификации костной ткани, особенностей строения и развития различных ее типов, мы охарактеризуем только некоторые черты ее организации.
К клеткам костной ткани относятся остеобласты и остеокласты (рис. 1.4.12).
Остеобласты фактически являются производными фиброцитов. Основная их функция — синтез межклеточного вещества в эмбриональном периоде и поддержание его метаболизма после формирования костной ткани. Дополнительная их функция сводится к участию в каль-цификации матрикса.
Рис. 1.4.12.Регенерирующая костная ткань. Клетки костной ткани (остеобласт и остеокласт) |
Различают активные и неактивные остеобласты. Активные остеобласты обладают базо-фильной цитоплазмой, содержащей развитый
синтетический аппарат (крупный комплекс Гольджи, шероховатая эндоплазматическая сеть), множество митохондрий и пузырьков. На поверхности клеток видны многочисленные микроворсинки.
Активные остеобласты синтезируют компоненты органической части матрикса костной ткани (остеоид) — коллаген I типа (до 90%), коллагены III,IV, V, XI, XIIIтипов (5% белков), гликопротеины (остеонектин, костный си-алопротеин, остеопонтин, остеокальцин), про-теогликаны (бигликан, декорин, гиалуроновая кислота). Остеобласты продуцируют также ци-токины, различные факторы роста, костные морфогенетические белки, ферменты (щелочную фосфатазу, коллагеназу), фосфопротеины (фосфорины).
Неактивные остеобласты образуются из активных и в покоящейся кости составляют 80—95%. Предполагают, что эти клетки участвуют в поддержании структуры костной ткани и играют важную роль в инициации перестройки костной ткани.
Остеобласты, по мере секреции проколла-гена и внеклеточной организации из него пучков коллагеновых волокон, дифференцируются в остеоциты. В дальнейшем происходит процесс кальцификации, т. е. отложения солей кальция в матриксе. В результате формируется костная ткань. Фиброциты при этом как бы замурованы в костные пластинки, хотя между ними и пластинками существует омываемое тканевой жидкостью пространство.
Остеоциты являются основным клеточным элементом зрелой кости. Количество органоидов в них уменьшено, исчезает способность к пролиферации. Функцией остеоцитов является поддержание нормального состояния костного матрикса.
Важным в функциональном отношении клеточным элементом костной ткани является остеокласт (рис. 1.4.12). Остеокласты представляют собой крупные с широким ободком базофильной или ацидофильной цитоплазмы многоядерные (до 100 и более ядер) клетки, располагающиеся в местах резорбции и перестройки костной ткани. Основной их функцией и является резорбция кости. Маркерными ферментами этих клеток являются кислая фосфа-таза, карбоангидраза и АТФ-аза.
Резорбция остеокластами костной ткани происходит поэтапно. Первоначально клетки прикрепляются к резорбируемой поверхности кости. Прикрепившиеся клетки «закисляют» содержимое лакун путем выделения кислого содержимого цитоплазмы в лакуны. В результате этого происходит резорбция минерального компонента матрикса. Разрушение органических компонентов кости происходит благодаря деятельности макрофагов.
В настоящее время показано, что источником образования остеокластов являются моноциты.
Глава 1. КЛЕТКА И ТКАНИ
Различают несколько типов костной ткани микрофиламентов. Однако мышечные ткани в зависимости от особенностей распределения специализированы на этой функции, что обес-коллагеновых волокон (рис. 1.4.13). Это грубо- печивается особыми свойствами их сократи-волокнистая и пластинчатая костная ткань, тельного аппарата.
Мышечная ткань довольно широко представлена в глазном яблоке и глазнице. Различают два основных типа мышечной ткани — гладкая и поперечнополосатая. Для глазного яблока свойственно наличие и третьего типа мышц, имеющих не мезенхимальное, как предыдущие мышцы, а нейроэктодермальное происхождение. Это сфинктер и дилятатор радужной оболочки. О них речь идет в разделе «Радужная оболочка».
Гладкая мышечная ткань.Гладкая мышечная ткань (рис. 1.4.14)является структурным компонентом стенок сосудов, большинства полых органов. В глазнице она формирует мышцу Мюллера. К гладкой мышце относится и ресничная мышца.
Рис. 1.4.13. Микроскопическое строение костной ткани:
а — поперечный срез костной ткани. Видны многочисленные ос-теоны, в центре которых расположены каналы (гаверсовы системы); б — строение остеона при большом увеличении. Видны остеоциты (стрелки), расположенные в лакунах
Особенности строения костной ткани различного типа как органа можно найти в руководствах по гистологии. Мы лишь отметим, что костные стенки глазницы состоят из так называемой пластинчатой костной ткана. Основной ее особенностью является то, что оссеиновые волокна в пластинах лежат параллельно друг другу. В соседних пластинках волокна лежат почти перпендикулярно, чем достигается большая прочность кости. Кости глазницы и лицевого черепа отличаются особенностями гистогенеза, о чем подробно будет сказано в главе 5.
Мышечная ткань
Мышечные ткани представляют собой группу тканей различного происхождения и строения, объединенных на основании общего признака — выраженной сократительной способности. Сократимость свойственна в той или иной степени клеткам всех тканей организма вследствие наличия в их цитоплазме сократительных
Рис. 1.4.14. Гладкомышечная ткань:
а — гладкомышечные клетки складываются в пучки, между которыми видны прослойки соединительной ткани; б—цитологические особенности гладкомышечных клеток. Ядра палочковидной формы. В цитоплазме видны миофиламенты
Основным структурным элементом гладкой мышцы является мышечная клетка (гладкий миоцит), имеющая, как правило, веретеновид-ную или звездчатую форму. Длина этих клеток довольно разнообразна (от 20 до 1000 мкм). Гладкие миоциты окружены сарколеммой, которая снаружи покрыта базальной мембраной. В саркоплазме обнаруживаются органеллы и включения. Поскольку сокращение требует затраты большого количества энергии, цитоплаз-
Ткани
ма мышечных клеток насыщена профилями сар-коплазматического ретикулума (эндоплазмати-ческий ретикулум). В клетке, как правило, одно ядро, которое располагается вдоль клетки. Периферическая часть саркоплазмы занята мио-филаментами (рис. 1.4.15).
Отдельные мышечные клетки складываются в плотный пучок. В зависимости от типа органа или ткани отдельные клеточные пучки ориентируются в стенке различным образом, но всегда так, чтобы их сокращение поддерживало тонус стенки (сосуда, стенки желудка и т. д.).
Рис. 1.4.15. Ультраструктурная организация гладко- |
мышечных клеток: |
а — продольный срез; 6 — поперечный срез; в — большее увеличение (/ — актиновые фибриллы; 2 — темные зоны; 3 — плотные тельца; 4 — коллагеновые волокна; 5 — пузырьки) |
Функцию сокращения мышечной клетки и комплекса мышечных клеток обеспечивают тонкие (актиновые) и толстые (миозиновые) миофиламенты. Эти филаменты фибрилл не образуют. Тонкие филаменты преобладают над толстыми по количеству и занимаемому ими объему клетки. Располагаются они пучками, по 10—20 филаментов, лежащих параллельно оси клетки. Концы актиновых филаментов закреплены в особых образованиях, находящихся в саркоплазме — плотных тельцах. Последние
также служат местом прикрепления промежуточных филаментов.
Миозиновые (толстые) филаменты отличаются от таковых поперечнополосатой мышцы различной длиной. Сокращение гладких миоци-тов обеспечивается взаимодействием актиновых и миозиновых филаментов и развивается в соответствии с моделью скользящих нитей. Возникающая сила передается через внутри-цитоплазматические филаменты плотным тельцам, прикрепленным к сарколемме. Благодаря этому продольная ось волокна укорачивается (рис. 1.4.16, 1.4.17).
Отдельные мышечные клетки очень компактно располагаются и разделены промежутками 40—80 нм. Межклеточные пространства выполнены компонентами базальной мембраны, кол-лагеновыми, эластическими волокнами, которые совместно с отдельными клетками (фиброблас-тами, тучными клетками) образуют эндомизий. Последний содержит сосуды и нервные волокна и способствует объединению миоцитов в пласты и слои (рис. 1.4.18). Формированию пласта миоцитами способствует образование ими различных связей (по типу миоцит—миоцит, мио-цит—клетка другого типа, миоцит—межклеточное вещество). В местах межклеточных соединений базальная мембрана отсутствует. Межклеточные соединения в пластах обеспечивают механическую и химическую (ионную) связь между ними. К соединениям между гладкими миоцитами относят интердигитации, плотные соединения, щелевые соединения (нексусы).
Благодаря вышеописанным связям сокращение отдельных клеток передается всему клеточному пласту, который обладает свойством обратимой деформации.
Сокращение гладкой мышечной ткани происходит под воздействием нервных импульсов, гуморальных влияний, а также вследствие раздражения миоцитов в отсутствие нервных и гуморальных воздействий (миогенная активность).
Иннервация гладкомышечной ткани осуществляется вегетативной нервной системой (симпатическая и парасимпатическая). Нервные окончания обнаруживаются лишь в отдельных клетках и имеют вид варикозно расширенных участков тонких веточек аксонов. На соседние миоциты возбуждение передается при помощи щелевых соединений.
Возможность гормональной регуляции активности миоцитов связана с наличием в клетках соответствующих рецепторов. Благодаря этому на клетки влияют такие вещества, как гистамин, серотонин, брадикинин, эндотелии, окись азота, лейкотриены, простагландины, нейротензин, вещество Р, бомбезин, холецито-кинин, вазоактивный интерстициальный пептид, опиоиды и др.
Растяжение мышцы является физиологическим раздражителем гладкой мышцы. При этом
Глава 1. КЛЕТКА И ТКАНИ
11 |
Рис. 1.4.16. Взаимосвязь элементов цитоскелета и сократительного аппарата гладкомышечной клетки (по В. J1. Быкову, 1999):
1—плотные пластинки; 2— кавеолы; 3— сарколемма; 4— немышечный актин; 5 — интегрины; 6 — комплекс адгезивных белков; 7 — мышечный актин; 8 — связывающие белки; 9 — межклеточное вещество; 10— плотные тельца; // — промежуточные филаменты; 12 — миозиновые миофиламенты
Рис. 1.4.17. Механизм сокращения гладкомышечной клетки
мышцы |
Рис. 1.4.18. Схема строения гладкой [по Р'. Кристину):
/ — веретеновидные гладкие миоциты; 2 — цитоплазма миоцита; 3 — ядра миоцитов; 4 — плазмолемма; 5 — базальная мембрана; 6 — поверхностные пиноцитозные пузырьки; 7 — межклеточные соединения; 8— нервное окончание; 9— коллагеновые фибриллы; 10—микрофиламенты
наступает деполяризация сарколеммы и усиливается приток ионов кальция в саркоплазму. Гладкая мышечная ткань характеризуется спонтанной ритмической активностью вследствие циклически меняющейся активности кальциевых насосов.
Гладкомышечная ткань способна к функциональной гипертрофии. Обладает она в определенной степени и способностью к регенерации (физиологической и репаративной).
Необходимо упомянуть еще о некоторых типах клеток, сходных с гладкомышечными. Это клетки, окружающие секреторные альвеолы экзокринных желез (молочные, потовые, слезные и др.). Их цитоплазма содержит миофиламенты. Поскольку эти клетки не мезенхимного, а эктодермального происхождения, их назвали миоэпигпелиальными клетками (рис. 1.4.19). С железистыми клетками миоэпителиальные клетки связаны десмосомами. Снаружи они покрыты базальной мембраной. Форма миоэпите-лиальных клеток в концевых отделах — отрост-чатая или звездчатая. Эти клетки получили также название корзинчатых, поскольку образуют как бы корзинку, охватывающую железистые клетки.
Помимо миофиламентов эти клетки содержат свойственные эпителиальным клеткам промежуточные филаменты типа цитокератанов. Иммуноцитомическими методами выявляется и свойственный мышечным тканям промежуточный филамент — десмин.
Ткани
др. Развивается она из мезенхимы. Правда, в области головы и шеи ее происхождение связывают с эктомезенхимой (см. главу 5).
Основным структурным компонентом поперечнополосатой мышцы является поперечнополосатое мышечное волокно (рис. 1.4.20).
Длина волокон в зависимости от типа мышцы довольно разнообразна и колеблется от нескольких миллиметров до нескольких десятков сантиметров. Диаметр также различен (12—70 мкм).
Мышечное волокно снаружи покрыто цито-плазматической оболочкой (сарколеммой) и состоит из цитоплазмы (саркоплазмы), в которой видно множество ядер овальной формы, располагающихся по периферии волокна под сарколеммой и ориентированных параллельно ей (рис. 1.4.21).
Саркоплазма содержит многочисленные органоиды—саркоплазматический ретикулум, митохондрии и свободные рибосомы, расположенные вблизи сарколеммы, а также зерна гликогена. Для саркоплазмы характерно наличие специфического растворимого пигментированного белка — миоглобина, близкого по строению к гемоглобину эритроцитов.
Рис. 1.4.19. Миоэпителиоциты:
а — миоэпителиоциты альвеолярно-трубчатой железы (/ — миоэпителиоциты; 2 — эпителий железы; 3 — просвет железы); б — схема расположения тел и отростков миоэпителиоцитов (/— тела клеток; 2— отростки клеток, охватывающие снаружи железу)
Другой тип клеток обнаруживается в стенках семенных канальцев яичка — миоидные клетки.
Существуют так называемые эндокринные гладкие миоциты, которые обнаруживаются в виде структурного компонента юкстагломеру-лярного аппарата почек, входя в состав стенки артериол почечного тельца. Эти клетки продуцируют ренин.
Миофибробласты, клетки мезенхимного происхождения, обладающие сократительной функцией, нами описаны выше.
Рис. 1.4.20. Микроскопическое строение поперчнополо-сатой мышечной ткани: а — светооптическое строение поперечнополосатой мышечной ткани (четко видна поперечная исчерченность мышечных во- |
Последний тип сократительных клеток имеет нейроэпителиальное происхождение. Это мионейральные клетки. Поскольку эти клетки обнаруживаются в глазном яблоке, о них подробно будет изложено в соответствующих разделах (см. Радужная оболочка).
Поперечнополосатая мышечная ткань.Поперечнополосатая мышечная ткань (скелетная мышечная ткань) широко распространена в
ппгяничмр R глячнипр R чягтнпгти ич нрр гп ткани (четко видна попеРечная исчерченность мышечных i Организме. В ГЛаЗНИЦе, В ЧаСТНОСТИ, ИЗ Нее СО- ЛОКОН! разделенных прослойками соединительной ткани); б
СТОЯТ Наружные МЫШЦЫ Глаза, МЫШЦЫ Века И большое увеличение мышечного волокна. Строение саркомера
Г л а в а 1. КЛЕТКА И ТКАНИ
той мышцы представлен поперечнополосатыми миофибриллами. Именно они обусловливают поперечную и продольную исчерченность, видимую как в световом, так и электронном микроскопах. Миофибриллы складываются в пучок, расположенный вдоль оси волокна.
Наличие поперечной исчерченности является результатом особой организации миофибрилл и связано с чередованием участков различного химического состава и оптических свойств. Одинаковые участки миофибрилл располагаются на одном уровне, что и приводит к поперечной исчерченности на протяжении всего волокна.
Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных А-дисков (анизотропных, обладающих двойным лучепреломлением в поляризованном свете) и светлых I-дисков (изотропных, не обладающих двойным лучепреломлением). Каждый диск I рассекается надвое тонкой темной Z-ли-нией, называемой также телофрагмой. В середине А-диска определяется светлая зона — полоска Н, через центр которой проходит М-линия— мезофрагма (рис. 1.4.21 —1.4.23).
Миофибриллы |
Саркомер
Миозиновые филаменты |
2,05 мкм |
Z-линия |
Актиновые_ "филаменты
1,06 мкм—»-j 0,05 мкм ■ А-диск---- |
0,15—0,20 мкм
Рис. 1.4.21. Ультраструктурная организация миофиб-риллы:
а — продольный разрез мышечного волокна; б — продольный срез саркомера (по обеим сторонам Z-линий видны половинки слабоокрашенных I-полос, содержащих только тонкие филамен-ты. Эти филаменты тянутся от Z-линий и проходят некоторое расстояние между толстыми филаментами, лежащими в более темной А-полосе. Участки А-полосы содержат как тонкие, так и толстые филаменты и поэтому кажутся более темными, чем та часть, где проходят только толстые филаменты — Н-зона. Через середину А-полосы проходит более темная М-линия); в — поперечный срез миофибриллы (видны тонкие и толстые филаменты. Тонкие филаменты образуют шестиугольную фигуру, в центре которой находится толстый филамент)
Актин
Рис. 1.4.22. Структура саркомера и механизм сокращения филаментов (объяснение в тексте)
Ткани
Рис. 1.4.23. Саркотубулярная структура поперечнополосатого мышечного волокна:
/ — сарколемма; 2 — саркоплазматические трубочки; 3 — Т-тру-бочки
Саркомер (миомер) представляет собой участок миофибриллы, расположенный между двумя телофрагмами (Z-линиями) и включающий А-диск и две половины 1-дисков — по одной половине с каждой стороны. В расслабленной мышце длина саркомера составляет около 2— 3 мкм, а ширина его участков выражается соотношением Н:А:1= 1:3:2. При сокращении мышцы саркомер укорачивается до 1,5 мкм.
Структура саркомера представлена упорядоченной системой толстых и тонких белковых нитей (миофиламентов). Толстые нити (диаметром около 10—12 нм и длиной 1,5—1,6 мкм) связаны с мезофрагмой и сосредоточены в А-диске, а тонкие (диаметром 7—8 нм и длиной 1 мкм) — прикреплены к телофрагмам, образуют 1-диски и частично проникают в А-диски между толстыми нитями (более светлый участок А-диска, свободный от тонких волокон, называется полоской Н). В саркомере насчитывается несколько сотен толстых нитей. По сечению саркомера толстые и тонкие нити располагаются высокоорганизованно в углах гексагональной решетки. Каждая толстая нить окружена шестью тонкими, каждая из тонких нитей частично входит в окружение трех соседних толстых.
Толстые нити (миофиламенты) образованы упакованными молекулами фибриллярного белка миозина. Молекула миозина имеет вид нити длиной 150 нм и толщиной 2 нм. На одном из концов эта молекула содержит две округлые
головки длиной около 20 нм и шириной около 4 нм. Протеолитическими ферментами миозин расщепляется на легкий меромиозин («стержень» молекулы миозина) и тяжелый меромиозин (участки головок и шейки, связывающей их со стержневой частью). Молекула миозина может сгибаться, как на шарнирах, в месте соединения тяжелого меромиозина с легким в области прикрепления головки. Стержневые части молекул миозина собраны в пучки. Такие пучки, соединенные зеркально концами друг с другом в области М-линии, формируют толстые нити с центральной гладкой частью длиной около 0,2 мкм и двумя периферическими участками, в которых от центрального стержня отходят миозиновые головки (около 500). Миозин головок обладает АТФ-азной активностью, однако в отсутствие его взаимодействия с актином скорость гидролиза АТФ ничтожно мала.
Тонкие нити (миофиламенты) содержат сократимый белок актин и два регуляторных белка — тропонин и тропомиозин. Последние формируют единый тропонин-тропомиозиновый комплекс. Актин в мономерной форме представлен полярными глобулярными белками (G-актин), которые имеют активные центры, способные связываться с молекулами миозина. G-актин агрегирует с образованием полимерного фибриллярного актина (F-актина), молекула которого имеет вид двух скрученных нитей толщиной 7 нм и вариабельной длины.
Тропомиозин представлен нитевидными молекулами, которые соединяются своими концами, образуя длинный тонкий тяж, лежащий в борозде, образуемой перевитыми нитями F-актина. Так как таких борозд на молекуле актина две, то и тропомиозиновых нитей тоже две. Всего в состав тонкой нити входит примерно 50 молекул тропомиозина.
Тропонин представляет собой глобулярный белок. Каждая его молекула располагается на тропомиозиновой молекуле вблизи ее конца. Тропонин состоит из трех субъединиц: ТпС — связывающий кальций, ТпТ — прикрепляющийся к тропомиозину и Tnl — ингибирующий связывание миозина с актином.
Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера (а следовательно, миофибрилл и всего мышечного волокна) при сокращении происходит благодаря тому, что тонкие нити вдвигаются в промежутки между толстыми нитями без изменения их длины (рис. 1.4.24). Скольжение нити в саркомере и усилие, развиваемое мышцей, обеспечиваются благодаря циклической активности мио-зиновых мостиков, которые при сокращении повторно прикрепляются к актину, обеспечивают усилие тяги, а затем открепляются от него. В этом механизме АТФ играет двойную роль, обеспечивая энергию, необходимую как для сокращения, так и открепления мостиков.
Глава 1. КЛЕТКА И ТКАНИ
Перимизий
Эндомизий |
Мышца |
Пучок Мышечные фибриллы
Капилляр Эндомизий
--"' М
,--''Н Z \А
_ 7 il as |
Г7' ' ^А"
1Ц iN Миофибрилла
Молекула миозина
Z
I
,-'Саркомер 4-^v
/ L-меромиозин / ', i
Миофиламенты
Н-меромиозин
Миозин |
Актин Тропомиозин Тропонин
Расположение миофиламентов в саркомере