Микротрубочки, реснички и центриоли. 7 страница

Рис. 1.4.38. Механизм формирования миелиновой обо­лочки шванновскими клетками (в периферической нервной системе) или олигодендроцитами (в централь­ной нервной системе)

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Рис. 1.4.39. Ультраструктурные особенности шваннов-ской клетки (а) и миелиновой оболочки периферичес­кого нерва (а, б):

а — отношение олигодендроцита к аксону (/—аксон; 2 — ядро

олигодендроцита; 3—немиелинизированный нервный ствол);

б—миелиновая оболочка аксона (/—миелиновая оболочка;

2— аксон; 3 — микротрубочки)

Астроглия представлена астроцитами (см. рис. 1.4.35, 1.4.36). Астроциты обладают много­численными отростками, расходящимися от те­ла клетки в разных направлениях, напоминая при этом звезды.

Характеризуется клетка наличием светлого овального ядра. Ее цитоплазма содержит не­большое количество органоидов, но значитель­ное количество зерен гликогена и промежуточ­ных филаментов. Промежуточные филаменты содержат особый глиальный фибриллярный кислый белок (ГФКБ), который служит марке­ром астроцитов. Астроциты образуют щелевые соединения между собой, а также с клетками олигодендроглии и эпендимной глии.

Разделяют астроциты на волокнистые (фибриллярные) и протоплазматические (плазматические). Отличия между двумя ти­пами клеток сводятся к тому, что цитоплаз-матические отростки фибриллярных астроци­тов практически не ветвятся, в то время как у протоплазматических астроцитов ветвление хорошо выражено.

Ультраструктурная организация этих клеток приблизительно одинаковая. Пучки филаментов распространяются от одного отростка к друго­му, проходя через тело клетки, что создает ее особую жесткость.

Протоплазматические астроциты преимуще­ственно встречаются в сером веществе цент­ральной нервной системы, а волокнистые — в белом. Кроме того, волокнистые астроциты содержат большое количество ГФКБ.

Учитывая то, что клетки астроглии плотно контактируют с сосудами и нейронами, пред­полагают, что эти клетки выполняют опор­ную, разграничительную, транспортную, барь­ерную, трофическую, защитную и регулятор-ную функции.

Опорная функция сводится к формированию астроцитами каркаса, внутри которого распола­гаются нейроны и волокна. В ходе эмбриональ­ного развития они служат опорными и направ­ляющими элементами, вдоль которых происхо­дит миграция нейронов. Направляющая функ­ция связана также с секрецией ростовых фак­торов, распознаваемых нейронами.

Разграничительная, транспортная и барьер­ная функции астроглии сводятся к участию в образовании гемато-энцефалического и нейро-ликворного барьеров, на которых более подроб­но мы остановимся в 4-й главе.

Трофическая функция является наиболее важной функцией астроглии. Направлена она на поддержание определенных концентраций ионов кальция и медиаторов в окружении ней­ронов. Астроциты совместно с олигодендрогли-ей принимают участие в метаболизме медиато­ров, активно захватывая их из синаптической щели и передавая нейрону.

Защитная функция астроглии сводится к участию в различных защитных реакциях — фагоцитозе, иммунной реакции, репаративной.

Как и олигодендроциты, астроциты способ­ны к пополнению клеточной популяции на про­тяжении всей жизни путем митотических деле­ний клеток-предшественников. Их высокая про-

Ткани




Микротрубочки, реснички и центриоли. 7 страница - student2.ru лиферативная активность способствует также глиальному рубцеванию поврежденных нерв­ных тканей.

Микроглия — это мелкие клетки, разбро­санные в белом и сером веществе мозга. Они составляют всего 5% популяции глиальных элементов. Микроглия обнаруживается и в сетчатой оболочке. Предполагают, что схожие по происхождению и функции клетки лежат в стекловидном теле вблизи сетчатки.

Считается, что микроглиальные клетки про­исходят из моноцитов или периваскулярных мак­рофагов мозга (мезенхимное происхождение). Структурной особенностью микроглии яв­ляется насыщенность цитоплазмы лизосомами. Вероятней всего микроглия определяет за­щитную функцию в нервной системе, относясь к клеткам системы иммунитета. При патологи­ческих состояниях микроглиальные клетки про­являют способность к передвижению, фаго­цитозу. Их количество существенно увеличи­вается при воспалительных и дегенеративных заболеваниях нервной ткани. При этом они утрачивают отростки, округляются и способны фагоцитировать остатки погибших клеток. При повышении активности микроглиальных клеток усиливается секреция ряда цитокинов и токси­ческих радикалов. Именно с этим связывают усиленную гибель нейронов путем апоптоза при некоторых заболеваниях нервной системы.

К глиальным элементам относят и эпендим-ную глию {эпендима). Клетки эпендимной глии выстилают желудочки мозга и спинномозговой канал. К эпендимной глие ряд авторов относит и плоские клетки, выстилающие мозговые обо­лочки (менинготелий).

Особенностью эпендимоцитов является на­личие на апикальной поверхности ресничек, ко­торые при своем движении перемещают спин­номозговую жидкость. Клетки эпендимной глии плотно прикрепляются друг к другу межклеточ­ными соединениями. Часть клеток лежит на базальной мембране. Некоторые клетки от ба-зальной своей поверхности отдают отростки по направлению мозга, входящие в состав по­верхностной пограничной глиальной мембраны (краевая глия).

Эпендимная глия выполняет опорную, тро­фическую, барьерную и секреторную функции. Барьерная функция эпендимной глии сводится к участию в образовании нейро-ликворного и гемато-ликворного барьеров.

Покрывает эпендима и сосудистые сплете­ния мозга (специализированными клетками — хориоидными эпендимоцитами и таницитами).

Завершая описание строения структурных элементов центральной нервной системы, необ­ходимо упомянуть и о нейропиле, т.е. структур­ном компоненте центральной нервной системы, представляющем собой при световой микроско­пии светло-голубой материал, в который погру­жены нейроны, их отростки, капиллярные сосу-

ды. Ультраструктурно показано, что нейропиль представляет собой переплетение клеточных тел, отростков нейронов и глиальных элементов.

1.5. СТРОЕНИЕ ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ

В периферической нервной системе различа­ют следующие компоненты:

1. Ганглии.

2. Нервы.

3. Нервные окончания и специализирован­
ные органы чувств.

Ганглии

Ганглии представляют собой скопление ней­ронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбро­санные в различных участках тела. Различают два типа ганглиев — цереброспинальные и ве­гетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и раз­личного размера (от 15 до 150 мкм). Ядро рас­полагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1). Каждое тело ней-

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Рис. 1.5.1. Микроскопическое строение интрамураль-

ного ганглия (а) и цитологические особенности ганг-

лиозных клеток (б):

а — группы ганглиозных клеток, окруженные волокнистой со­
единительной тканью. Снаружи ганглий покрыт капсулой, к ко­
торой прилежит жировая клетчатка; б—нейроны ганглия (/___

влючение в цитоплазме ганглиозной клетки; 2 — гипертрофиро-ваное ядрышко; 3 — клетки-сателлиты)



Глава 1. КЛЕТКА И ТКАНИ



Микротрубочки, реснички и центриоли. 7 страница - student2.ru рона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клет­кам глиальной системы. Проксимальный отрос­ток каждой ганглиозной клетки в заднем ко­решке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает задне­го столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сво­дится к тому, что нейроны вегетативных гангли­ев мультиполярны. В области глазницы обна­руживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко оп­ределяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр на­зывают эпинервием. Группы из нескольких пуч­ков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой во­локнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндо-неврий (рис. 1.5.2).

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез):

1— аксоны нейронов; 2— ядра шванновских клеток (леммо­циты); J—перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных воло­кон, являющихся цитоплазматическими отрост­ками нейронов. Каждое периферическое нерв­ное волокно покрыто тонким слоем цитоплаз­мы — неврилеммой, или шванновской оболоч­кой. Шванновские клетки (леммоциты), участ­вующие в формировании этой оболочки, про­исходят из клеток нервного гребня.

В некоторых нервах между нервным волок­ном и шванновской клеткой располагается слой миелина. Первые называются миелинизирован-ными, а вторые — немиелинизированными нерв­ными волокнами.

Миелин (рис. 1.5.3) покрывает нервное во­локно не сплошь, а через определенное рас­стояние прерывается. Участки прерывания мие­лина обозначаются перехватами Ранвье. Рас-

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье:

а — светооптическая микроскопия. Стрелкой указан перехват Ранвье; б—ультраструктурные особенности (/—аксоплазма аксона; 2— аксолемма; 3 — базальная мембрана; 4 — цитоплаз­ма леммоцита (шванновская клетка); 5 — цитоплазматнческая мембрана леммоцита; 6 — митохондрия; 7 — миелиновая оболоч­ка; 8 — нейрофилламенты; 9 — нейротрубочки; 10 — узелковая зона перехвата; // — плазмолемма леммоцита; 12 — пространст­во между соседними леммоцитами)

Строение периферической нервной системы




Микротрубочки, реснички и центриоли. 7 страница - student2.ru стояние между последовательными перехвата­ми Ранвье варьирует от 0,3 до 1,5 мм. Перехва­ты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олиго-дендроциты (см. выше). Нервные волокна раз­ветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов? Первона­чально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с дру­гом. Обе части цитоплазматической мембра­ны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спира­ли. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цито­плазматической мембраны. По мере наматыва­ния цитоплазма шванновской клетки выдавли­вается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболоч­ки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавли­ванию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в не-миелинизированном волокне освещен в руко­водствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности про­цесса (рис. 1.5.4).

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

часть О клетки

Место формирования потенциала действия

Внутр.

Наружная часть клетки

'о;

Рис. 1.5.4. Особенности проведения потенциала дейст­вия в миелинизированном (а) и немиелинизированном (б) нервном волокне (объяснение в тексте)

Известно, что цитоплазматическая мембра­на нейрона поляризованна, т. е. между внутрен­ней и наружной поверхностью мембраны суще­ствует электростатический потенциал, равный — 70 мВ. Причем внутренняя поверхность обла­дает отрицательным, а наружная положитель­ным зарядом. Подобное состояние обеспечива­ется действием натрий-калиевого насоса и осо­бенностями белкового состава внутрицитоплаз-матического содержимого (преобладание отри­цательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раз­дражения цитоплазматической мембраны самы­ми разнообразными физическими, химически­ми и др. факторами, первоначально наступает деполяризация, а затем реполяризация мем­браны. В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяри-зации активный с использованием энергетичес­ких запасов АТФ.

Волна деполяризации — реполяризации рас­пространяется вдоль цитоплазматической мем­браны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действия.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цито­плазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембра­ны таким же образом, как в немиелинизирован-ных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возмож­ной деполяризации до другого) передача не­рвного импульса осуществляется внутрицито-плазматическими местными токами. Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, пере­дача нервного импульса в миелинизированном нервном волокне происходит значительно быст­рее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротив­ления. Подобный тип передачи нервного им­пульса называется сальтаторным, т. е. прыга­ющим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные)нервные окончания (рис. 1.5.5, 1.5.6).

Афферентные нервные окончания представ­ляют собой концевые аппараты дендритов чув­ствительных нейронов, повсеместно располага­ющихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже опи­санными явлениями поляризации и деполяри­зации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферент­ных окончаний — в зависимости от специфич­ности раздражения (хеморецепторы, бароре-



Глава 1. КЛЕТКА И ТКАНИ

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

це Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышеч­ной ткани, часть которых обнаруживается в на­ружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распро­страненным рецептором мышечной ткани явля­ется нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение во­локон поперечно-полосатых мышц. Представ­ляют они собой сложные инкапсулированные нервные окончания, обладающие как чувстви­тельной, так и двигательной иннервацией. Чис­ло веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено распола­гается вдоль мышечных волокон. Веретено по­крыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой на­ходятся тонкие поперечнополосатые интрафу-зальные мышечные волокна двух видов:

— волокна с ядерной сумкой — в расши­
ренной центральной части которых содержатся
скопления ядер (1—4 — волокна/веретено);

— волокна с ядерной цепочкой — более тон­
кие с расположением ядер в виде цепочки в
центральной части (до 10 волокон/веретено).

Рис. 1.5.5. Особенности строения различных рецеп-торных окончаний:

а — свободные нервные окончания; б— тельце Мейснера; в — колба Краузе; г — тельце Фатер—Пачини; д — тельце Руффини

цепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слу­ховые рецепторы, а также рецепторы, воспри­нимающие движение частей тела относительно направления силы тяжести, называют специ­альными органами чувств. В последующих гла­вах этой книги мы подробно остановимся толь­ко на зрительных рецепторах.

Рецепторы разнообразны по форме, строе­нию и функциям. В данном разделе нашей зада­чей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на раз­личия свободных и несвободных нервных окон­чаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилинд­ра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волок­на. Если они покрыты соединительнотканной капсулой, они называются инкапсулированны­ми (тельце Фатер—Пачини, осязательное тель-

Микротрубочки, реснички и центриоли. 7 страница - student2.ru

Рис. 1.5.6. Строение нервно-мышечного веретена:

а—моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б — спиральные афферентные нервные окон­чания вокруг интрафузальных мышечных волокон в области ядерных сумок (/ — нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 — моторные бляшки интрафузальных мышечных волокон; 3 — соединительнотканная капсула; 4 — ядерная сумка; 5 — чувствительные кольцеспираль-ные нервные окончания вокруг ядерных сумок; 6 — скелетные мышечные волокна; 7 — нерв)

Строение периферической нервной системы.




Микротрубочки, реснички и центриоли. 7 страница - student2.ru Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна — тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухо­жильные органы Гольджи). Это веретеновид-ные инкапсулированные структуры длиной око­ло 0,5—1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каж­дое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), кото­рая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично по­крытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания не­рвных волокон на мышечных клетках, железах и др. Более подробное их описание будет при­ведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышеч­ном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечно­полосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинапти-ческую часть, специализированного участка на мышечном волокне, соответствующего постси-наптической части, и разделяющей их синапти-ческой щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним ак­соном. Один мотонейрон в совокупности с ин-нервируемыми им мышечными волокнами обра­зует двигательную единицу.

Пресинаптическая часть формируется следу­ющим образом. Вблизи мышечного волокна ак­сон утрачивает миелиновую оболочку и дает не­сколько веточек, которые сверху покрыты упло­щенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терми­налах аксона имеются митохондрии и синапти-ческие пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветв­лений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние ак­тивные зоны одного окончания.

Постсинаптическая часть представлена мем­браной мышечного волокна (сарколеммой), об-

разующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мемб­раны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности, со­держит многочисленные митохондрии, цистер­ны шероховатого эндоплазматического ретику-лума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в хими­ческом межнейронном синапсе. При деполя­ризации пресинаптической мембраны происхо­дит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецеп-торами в постсинаптической мембране вызыва­ет ее деполяризацию и последующее сокраще­ние мышечного волокна. Медиатор отщепляет­ся от рецептора и быстро разрушается ацетил-холинэстеразой.

Наши рекомендации