Оценка биологического разнообразия

Лекция 7.

ОСНОВЫ БИОЛОГИЧЕСКОГО МОНИТОРИНГА

В настоящее время, когда антропогенное воздействие на природные процессы стало одним из наиболее значимых экологических факторов, определяющих новые условия существования биологических систем, очевидно, нет необходимости специально обосновывать и доказывать фундаментальность исследований, направленных на поиск критериев и методов оценки критической величины техногенной нагрузки на человека, сообщества растений и животных.

Мониторинг биологических объектов называют биологическим мониторингом [8]. Множество системных эффектов проявляется именно на биологическом уровне. В частности сложно определить какой из химических или физических факторов лимитирует жизнедеятельность того или иного вида, а если учесть также биотические факторы, то становится ясно, что оценки только абиотических факторов явно не достаточно. Биологический мониторинг дает интегральную оценку влияния комплекса загрязняющих окружающую среду веществ, а также определяет качество среды обитания организмов.

По этим причине уж давно назрела необходимость создания глобальной системы биологического мониторинга. К сожалению, в решении этой важной для охраны окружающей среды задачи мы оказались «позади планеты всей», несмотря на имеющиеся научные разработки в области планирования и проведения биомониторинга, поиска тест-критериев и тест-объектов, адекватно отражающих уровень техногенной нагрузки на экосистемы, а также прогнозирования состояния окружающей среды на основе данных биоиндикации. Рассмотрим основные методы биомониторинга.

Биоиндикация

Биоиндикация – метод оценки изменений в среде при помощи биологических объектов.

Организмы или сообщества организмов по наличию, состоянию и поведению которых судят об изменениях в среде, называются биоиндикаторами. С помощью биоиндикаторов можно обнаруживать места скоплений в экологических системах различного рода загрязнений, а также проследить скорость происходящих в окружающей среде изменений. Основой задачей биоиндикации является разработка методов и критериев, которые могли бы диагностировать ранние нарушения в наиболее чувствительных компонентах природных сообществ [33, 44].

В основе биоиндикации лежит очевидная экологическая экстраполяция – наличие определённого видового состава свидетельствует об определённых условиях окружающей среды. Например, установлено, что хвойные породы деревьев, лишайники чувствительнее прочих видов реагируют на присутствие в воздухе кислых газов, в первую очередь, сернистого ангидрида. Исследователи предлагают установить предельно допустимые концентрации для диких видов с тем, чтобы использовать эти нормативы при оценке ущерба и ограничении воздействия на особо охраняемые природные объекты. Однако широкое применение чувствительность растений нашла лишь в биологическом мониторинге; экологическое нормирование состояния атмосферного воздуха на практике фактически не реализовано. Больших успехов достигли исследователи биоиндикаторов гидросферы.

Зависимость жизнедеятельности организмов от концентрации минеральных солей. В естественных водах концентрация минеральных солей различна. В пресной воде максимальное содержание растворенных веществ равно 0,5 г/л. В морской воде среднее содержание растворенных солей 35 г/л. В солоноватых водах этот показатель очень изменчив. Соленость обычно выражается в промиллях (‰) и является одной из основных характеристик водных масс, распределения морских организмов, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, т.к. многие организмы очень восприимчивы к незначительным ее изменениям. Многие виды животных являются целиком морскими (многие виды рыб, беспозвоночных и млекопитающих).

В солоноватых водах обитают виды, способные переносить повышенную соленость. В эстуариях, где соленость ниже 3 ‰, морская фауна беднее. В Балтийском море, соленость которого составляет 4 ‰, встречаются балянусы, кольчецы, а также коловратки и гидроиды.

Водные организмы подразделяются на пресноводные и морские по степени солености воды, в которой они обитают. Сравнительно немногие растения и животные могут выдерживать большие колебания солености. Такие виды обычно обитают в эстуариях рек или в соленых маршах и носят названия эвригалинных. К ним относятся многие обитатели литорали (соленость около 35 ‰), эстуариев рек, солоноватоводных (5-35 ‰) и ультрасоленых (50-250 ‰), а также проходные рыбы, нерестящиеся в пресной воде (< 5 ‰). Наиболее удивительный пример – рачок Artemia salina, способный существовать при солености от 20 до 250 ‰ и даже переносить полное временное опреснение. Способность существовать в водах с различной соленостью обеспечивается механизмами осморегуляции, которую поддерживают относительно постоянные концентрации осмотически активных веществ в жидкостях внутренней среды.

По отношению к солености среды животные делятся на стеногалинных и эвригалинных. Стеногалинные животные – животные, не выдерживающие значительные изменения солености среды. Это подавляющее число обитателей морских и пресных водоемов. Эвригалинные животные способны жить при широком диапазоне колебаний солености. Например, улитка Hydrobia ulvae способна выживать при изменении концентрации NaCl от 50 до 1600 ммоль/мл. К ним относятся также медуза Aurelia aurita, съедобная мидия Mutilus edulis, краб Carcinus maenas, аппендикулярия Oikopleura dioica.

Устойчивость по отношению к изменению солености меняется с температурой. Например, гидроид Cordylophora caspia лучше переносит низкую соленость при невысокой температуре; десятиногие раки переходят в малосоленые воды, когда температура становится слишком высокой. Виды, обитающие в солоноватых водах, отличаются от морских форм размерами. Так, краб Carcinus maenas в Балтийском море имеет маленькие размеры, а в эстуариях и лагунах – крупные. То же можно сказать и о съедобной мидии Mutilus edulis, имеющей в Балтийском море средний размер 4 см, в Белом море – 10-12 см, а в Японском – 14-16 см в соответствии с увеличением солености. Кроме того, от солености среды зависит и строение эвригалинных видов. Рачок артемия при солености 122 ‰ имеет размер 10 мм, при 20 ‰ достигает 24-32 мм. Одновременно изменяется форма тела, придатков и окраска.

Влияние рН на выживаемость организмов-гидробионтов.Большинство организмов не выносят колебаний величины рН. Обмен веществ у них функционирует лишь в среде со строго определенным режимом кислотности-щелочности. Концентрация водородных ионов в естественных водоёмах во многом зависит от карбонатной системы, которая является важной для всей гидросферы и описывается сложной системой равновесий, устанавливающихся при растворении в природных пресных водах свободного СО2. По этой причине рН пресных природных вод редко бывает теоретически нейтральной, т.е. равной 7. Чаще всего рН чистой воды колеблется от 6,9 до 5,6. В природе на воду оказывает действие многочисленные факторы: температура, давление, содержание в атмосфере кислорода, аммиака, диоксида и триоксида серы, азота, состав пород по которым протекает река или расположено озеро.

Например, рыбы выносят рН в пределах от 5,0 до 9,0, но некоторые виды способны приспосабливаться к значению рН до 3,7. При рН > 10 вода гибельна для всех рыб. Максимальная продуктивность вод приходится на рН между 6,5 и 8,5. В табл. 9.1 указаны основные величины рН для пресноводных рыб Европы.

Таблица 9.1

Значения рН для пресноводных рыб Европы [17]

рН Характер воздействия на пресноводных рыб
3,0-3,5 Гибельно для рыб; выживают некоторые растения и беспозвоночные
3,5-4,0 Гибельно для лососевых рыб; плотва, окунь, щука могут выжить после акклиматизации
4,0-4,5 Гибельно для многих рыб, размножается только щука
4,5-5,0 Опасно для икры лососевых рыб
5,0-9,0 Область, пригодная для жизни
9,0-9,5 Опасно для окуня и лососевых рыб в случае длительного воздействия
9,5-10,0 Вредно для развития некоторых видов, гибельно для лососевых при большой продолжительности воздействия
10,0-10,5 Переносится плотвой в течение очень короткого времени
10,5-11,5 Смертельно для всех рыб

Показатель рН сравнительно легко измерить, поэтому его изучили во многих водных местообитаниях. Если рН не приближается к крайнему значению (от 6,5 до 8,5), то сообщества способны компенсировать изменения этого фактора и толерантность сообщества к диапазону рН, встречающемуся в природе, весьма значительна. Изменение рН пропорционально изменению количества СО2, т.е. рН может служить индикатором скорости общего метаболизма сообщества (фотосинтеза и дыхания). В воде с низким рН содержится мало биогенных элементов, в связи с чем продуктивность здесь мала. рН сказывается и на распределении водных организмов.

Растения растут в воде с рН ниже 7,5 (Isoetes и Sparganium), от 7,7 до 8,8 (Potamogeton и Elodea canadensis), от 8,4 до 9,0 (Typha angustifolia). Развитие сфагновых мхов стимулируют кислые воды торфяников, в которых очень редки моллюски, ввиду отсутствия извести, зато часто встречаются личинки двукрылых из рода Chaoborus.

Влияние количества растворенного кислорода гидробионтов.Демаркационным критерием выживания аналогично может являться концентрация кислорода. По отношению к кислороду выделяют аэробные и анаэробные организмы. Аэробными организмами называются такие организмы, которые способны жить и развиваться только при наличии в среде свободного кислорода, используемого ими в качестве окислителя. К аэробным организмам принадлежат все растения, большинство простейших и многоклеточных животных, почти все грибы, т.е. подавляющее большинство известных видов живых существ. У животных жизнь в отсутствие кислорода (анаэробиоз) встречается как вторичное приспособление.

Анаэробные организмы способны жить и развиваться при отсутствии в среде свободного кислорода. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 г. бактерии маслянокислого брожения. Распространены они главным образом среди прокариот. Метаболизм их обусловлен необходимостью использовать иные окислители, чем кислород. Многие анаэробные организмы, использующие органические вещества (все эукариоты, получающие энергию в результате гликолиза), осуществляют различные типы брожения, при которых образуются восстановленные соединения – спирты, жирные кислоты. Другие анаэробные организмы – денитрифицирующие (часть из них восстанавливает окисное железо), сульфатвосстанавливающие, метанообразующие бактерии – используют неорганические окислители: нитрат, соединения серы, СО2. Анаэробные бактерии разделяются на группы маслянокислых и т.д. в соответствии с основным продуктом обмена. Особую группу анаэробов составляют фототрофные бактерии.

По отношению к О2 анаэробные бактерии делятся на облигатных, которые неспособны использовать его в обмене, и факультативных (например, денитрифицирующие), которые могут переходить от анаэробиоза к росту в среде с О2.

Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от соотношения интенсивности процессов его продуцирования и потребления.

В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов. Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода: 1) 7-11 мг/л – форель, гольян, подкаменщик; 2) 5-7 мг/л – хариус, пескарь, голавль, налим; 3) 4 мг/л – плотва, ерш; 4) 0,5 мг/л – карп, линь.

Некоторые виды организмов приспособились к сезонным ритмам в потреблении О2, связанными с условиями жизни. Так, у рачка Gammarus Linnaeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года. У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода. Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски). Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водяные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.

Основная проблема биоиндикации это создание баз данных биоиндикаторов. Существует Международная комиссия по биоиндикаторам, специально созданная для координации исследований в области биологической индикации и мониторинга поллютантов окружающей среды.

Оценка биологического разнообразия

Весьма сложным методом, но колоссально информативным является оценка таксономического разнообразия. Исследователю при использовании упомянутых методов оценки не требуется исследовать колоссальные базы мониторинговых данных по абиотическому компоненту и определять различные смешанные эффекты этих взаимодействий – наличие определённых видов уже говорит само за себя, но данные методы позволяют делать выводы не только по наличию видов-биоиндикаторов, а по совокупности всей компонентов «биологического разнообразия» (биоразнообразия).

Понятие «биологическое разнообразие» за весьма короткий отрезок времени получило большое количество толкований. В биологическом смысле рассматриваются представления о внутривидовом, видовом и надвидовом (ценотическом) разнообразии жизни. Однако, позднее, сначала деятели охраны природы, а затем и ученые стали говорить об экосистемном и ландшафтном разнообразии как объектах сохранения, а, соответственно, изучения и выделения в природе.

В 1992 г. на Конференции ООН по окружающей среде и развитию была принята «Конвенция о биологическом разнообразии», к которой присоединилось большинство стран на планете, а, следовательно, сложнейшая и многообразнейшая проблема биоразнообразия приобрела еще и политическое звучание.

Большинство исследователей сходятся во мнении, что словосочетание «биологическое разнообразие» впервые применил Г. Бэйтс в 1892 г. в работе «Натуралист на Амазонке», когда описывал свои впечатления от встречи около 700 разных видов бабочек за время часовой экскурсии. Однако основные научные концепции биоразнообразия были сформулированы лишь в середине ХХ века, что напрямую связано с развитием количественных методов в биологии. Особенно отметим работы Р. Уиттекера, в которых была предложена организация уровней экосистемного разнообразия и исследованы зависимости биоразнообразия от факторов окружающей среды.

Обратим внимание, что исследование различных аспектов биоразнообразия является одним из магистральных направлений концепции устойчивого развития. Устойчивое развитие определяют как управляемый процесс коэволюционного развития природы и общества. Как деятельность, устойчивое развитие нуждается в поддержке мощной информационной базы цифровых данных по экологическим, социально-демографическим, производственно-экономическим условиям и тенденциям их развития. На основе этих данных строятся модели экономического благополучия и проводятся научные исследования.

Здесь мы сталкиваемся с рядом проблем. Во-первых, объемы первичной информации устойчивого развития территорий, даже локального уровня, очень велики. В связи с этим проявляется проблема накопления, целенаправленного структурирования и обработки колоссального объема информации. Во-вторых, существует проблема получения качественно новой информации на основе первичной (здесь следует отметить, что на данный момент накопилось большое количество тематической информации в различных форматах) и прогнозирования. Анализ информации невозможен без адекватного математического аппарата и на его разработку в различных областях тратится «львиная доля» ресурсов. В-третьих, необходима единая концептуальная система, объединяющая этапы сбора, обработки, анализа информации и прогноза.

В настоящее время существует несколько попыток реализации информационных систем с экологическим наполнением. Как правило, подразумевается реализация с помощью некоторой ЭИС (экологическая информационная система) или БИС (биоинформационная система). Но основанная проблема всех систем – это математическое обоснование. Определим для начала основные показатели биологического мониторинга.

Встречаемость (частота встречаемости, коэффициент встречаемости) – это относительное число выборок (участков), в которых встречается вид. Если выборка состоит из 100 учетных площадок, а вид отмечен на 43, то и встречаемость равна 43%. При встречаемости 25%, вид встречается в каждой четвертой площадке учета и он случайный. Высокая встречаемость, если вид отмечен более, чем на 50% учетных площадок. Обычно закладывается 50 учетных площадок, но не менее 25.

Обилие – это количество особей вида на единице площади или объема. Наиболее часто используются шкалы обилия Друде и Хульта (табл. 9.2).

Покрытие – процент площади, покрываемой надземными частями растений. Процент площади, занятой основаниями растений – истинное покрытие, верхними частями – проективное. Проективное покрытие – обязательный показатель при изучении надпочвенного покрова. При изучении древесно-кустарниковых ярусов синонимом проективного покрытия служит сомкнутость – отношение площади проекций крон к площади занимаемого участка; в отличие от проективного покрытия сомкнутость измеряется в долях от единицы. Истинное покрытие для древостоя – сумма площадей поперечного сечения стволов и полнота, определяется расчетным путем по данным перечета древостоя.

Таблица 9.2

Наши рекомендации