Плотноионизирующие и редкоионизирующие излучения
Первичные изменения атомов и молекул сводятся к ионизации или возбуждению и качественно не зависят от вида действующего на них ИИ. Однако при одном и том же количестве энергии, поглощённой единицею массы вещества, микропространственное распределение этой энергии в облучённом объёме различно. Это различие определяется линейной передачей энергии (ЛПЭ) - количеством энергии, передаваемой частицей веществу в среднем на единицу длины пройденного в нём пути:
ЛПЭ = dE/dx,
где Е – энергия частицы (эВ); х – путь частицы (мкм).
ЛПЭ зависит от вида ИИ и плотности вещества. Значения этого показателя, приводимые в справочных таблицах, обычно соответствуют величине ЛПЭ конкретного ИИ в воде. ЛПЭ электромагнитных ИИ и нейтронов определяется величиной ЛПЭ первичных ионизирующих факторов (электронов и ядер отдачи, соответственно).
Зная величину ЛПЭ, можно определить среднее число ионов, образующихся на единицу длины пути частицы ИИ. Для этого надо разделить величину ЛПЭ на величину энергии, необходимой для образования одной пары ионов (как отмечалось, эта величина составляет 34 эВ). Количество пар ионов, образующихся в среднем на 1 мкм пути частицы ИИ в веществе, называется линейной плотностью ионизации (ЛПИ).
В зависимости от величины ЛПЭ, все ионизирующие излучения делят на редко- и плотноионизирующие (табл. 62).
Таблица 62.
Редкоионизирующие и плотноионизирующие излучения
Критерий | Ионизирующие излучения | |
Редкоионизирующие | Плотноионизирующие | |
Величина ЛПЭ, КэВ/мкм | Менее 10 | Более 10 |
Название ИИ | Все электромагнитные ИИ; β-излучение | Протоны, другие ядра отдачи; α-частицы; нейтроны |
Редкоионизирующие излучения отличаются сравнительно высокой проникающей способностью, и, в силу этого, их энергия распределяется в объёме облучаемых тел более равномерно, чем в случае воздействия плотноионизирующих ИИ. Для микроскопических тел (по размерам сопоставимых с клетками) эта разница несущественна, и различия в эффекте равных по энергии количеств излучения определяются исключительно величиной ЛПЭ. С величиной ЛПЭ прямо связана и относительная биологическая эффективность (ОБЭ) излучения в отношении микроскопичесих биообъектов.
При воздействии на вещество нейтронов образуются ядра отдачи, величина ЛПЭ которых велика. Поэтому и нейтроны относят к плотноионизирующим ИИ. Вместе с тем, нейтроны обладают и большой проникающей способностью; образующиеся при их действии плотноионизирующие частицы возникают на разной глубине в толще облучаемого объекта.
Количественная оценка ионизирующих излучений.
Основы дозиметрии
Выявление ИИ и количественная оценка уровня радиационных воздействий называется дозиметрией. Для количественной характеристики уровня лучевого воздействия введено понятие дозы излучения. Применяются три основных вида дозы – экспозиционная, поглощённая и эквивалентная.
Экспозиционная доза (Х) – мера количества ИИ, физическим смыслом которой является суммарный заряд ионов одного знака, образующихся при облучении воздуха в его единичной массе:
Х = dQ/dm ,
где dQ – суммарный заряд всех ионов одного знака, возникающих в воздухе при полном торможении всех вторичных электронов, образовавшихся в малом объёме пространства, dm – масса воздуха в этом объёме.
В системе СИ единицей экспозиционной дозы является кулон, делённый на килограмм (Кл/кг). Более часто, однако, применяется внесистемная единица экспозиционной дозы – рентген (Р), соответствующая образованию 2,1 · 109 пар ионов в 1 см3 сухого воздуха при нормальных условиях. 1Кл\кг = 3876 Р; 1Р = 2,58 ·10-4 Кл/кг.
Изменения, вызываемые излучением в воздухе и в других средах, количественно различны. Это связано с разным количеством энергии, передаваемой излучением одинаковым по массе количествам разных веществ. Учесть этот фактор можно, выражая количество ИИ в единицахпоглощённой дозы (D). Физический смысл поглощённой дозы – количество энергии, передаваемой излучением единичной массе вещества:
D = dE/dm ,
где dE – энергия излучения, поглощённая малой массой вещества dm.
В системе СИ поглощённую дозу выражают в греях (Гр). 1Гр = 1Дж/кг. Часто пользуются внесистемной единицей поглощённой дозы – рад (аббревиатура «radiation absorbed dose»). Рад равен сантигрею (1рад = 10-2Гр).
Непосредственно измерить биологически значимые величины поглощённых доз не всегда возможно из-за незначительности соответствующей им энергии. Так, при общем облучении человека массой 76 кг в смертельной дозе 4 Гр его телу сообщается энергия 305 Дж. Её достаточно лишь для нагревания тела на 0,001ОС. Поэтому непосредственно измеряется, как правило, экспозиционная доза ИИ, а поглощённая доза рассчитывается с учётом свойств облучаемой среды. В воздухе 1 рентген соответствует 0,89 рад, а в тканях организма, в среднем, 0,95 рад.
Эквивалентная доза.Различные ИИ вызывают в биосистемах количественно различные эффекты даже при одинаковой поглощённой дозе. Это связано, главным образом, с такими характеристиками ИИ, как ЛПЭ и коэффициент ослабления m.. Для малоразмерных биологических объектов (например, для макромолекул, клеточных органелл и клеток), большему значению ЛПЭ воздействующего на них излучения соответствует большее число актов ионизации и возбуждения, возникающих в пределах конкретного биообъекта. Соответственно, большим оказывается и повреждающий эффект плотноионизирующих излучений в отношении клеток и субклеточных структур. Данное различие выражается величиной ОБЭ. Для рентгеновского и g-излучения её принимают равной 1, а для каждого из остальных ИИ значение ОБЭ рассчитывают как отношение равноэффективных поглощённых доз рентгеновского и рассматриваемого ИИ. Значения ОБЭ для некоторых видов ИИ представлены в таблице 63.
Таблица 63.