Физические характеристики шума

Лекция № 10.

Акустические колебания, шум

Вопросы борьбы с шумом в настоящее время имеют большое значение в различных областях экономики, в том числе в машиностроении, на транспорте, в энергетике.

Шум на производстве наносит большой ущерб, вредно действуя на организм человека и снижая производи­тельность труда. Утомление рабочих, операторов и служащих из-за сильного шума увеличивает число ошибок при работе, способствует возникновению травм. Нередко и в быту человек подвергается воздействию шума недопустимо высоких уровней. Поэтому борьба с шумом является важной задачей.

Часто возникает необходимость защиты не только от шума, но и от инфра- и ультразвука.

Методы борьбы с шумом

Для сниже­ния шума можно применить следующие методы:

- умень­шение шума в источнике его образования;

- снижение шума на пути его распространения - акустическая обработка помещений, изоляция источников шума, применение глушителей шума;

- использование средств индивидуальной защиты от шума;

- изменение направленности из­лучения;

- рациональная планировка предприятий и це­хов, рациональные планировочные приемы градостроительства;

1. Уменьшение шума в источнике. Борьба с шумом по­средством уменьшения его в источнике является наиболее рациональной.

Шум возникает вследствие упругих колебаний как машины в целом, так и отдельных ее деталей. Причины возникновения этих колебаний — механические, аэроди­намические, гидродинамические и электрические явле­ния, определяемые конструкцией и характером работы машины, а также неточностями, допущенными при ее изготовлении, и, наконец, условиями эксплуатации. В связи с этим различают шумы механического, аэроди­намического, гидродинамического и электромагнитного происхождения.

Механические шумы. Факторы, вызывающие шумы механического происхождения, следующие: инерционные возмущающие силы, возникающие из-за движения де­талей механизма с переменными ускорениями; соударе­ние деталей в сочленениях вследствие неизбежных зазо­ров; трение в сочленениях деталей механизмов; удар­ные процессы (ковка, штамповка) и т. д.

Основными источниками шума, происхождение кото­рого не связано непосредственно с технологическими операциями, выполняемыми машиной, являются, прежде всего, подшипники качения и зубчатые передачи, а так­же неуравновешенные вращающиеся части машины.

Зубчатые передачи — источники шума в широком диапазоне частот. Основными причинами возникновения шума являются деформации сопрягаемых зубьев под действием передаваемой нагрузки и динамические про­цессы в зацеплении, обусловленные неточностями изго­товления колес. Шум имеет дискретный характер. Шум зубчатых передач возрастает с увеличением частоты вращения колес и нагрузки.

Уменьшение механического шума может быть до­стигнуто путем совершенствования технологических процессов и оборудования. Например, внедрение авто­матической сварки вместо ручной устраняет образова­ние брызг на металле, что позволяет исключить шум­ную операцию по зачистке сварного шва. Применение фрезерных тракторов для обработки кромок металла под сварку вместо пневмозубил делает этот процесс зна­чительно менее шумным.

Нередко повышенный уровень шума является след­ствием неисправности или износа механизмов, в этом случае своевременный ремонт позволяет снизить шум.

Необходимо отметить, что проведение многих меро­приятий по борьбе с вибрациями дает од­новременно и снижение шума. Для уменьшения меха­нического шума необходимо:

- заменять ударные процессы и механизмы безударны­ми, например, применять оборудование с гидроприводом вместо оборудования с кривошипными и эксцентриковы­ми приводами;

- штамповку — прессованием, клепку — сваркой, обруб­ку — резкой и т. д.;

- заменять возвратно-поступательное движение дета­лей равномерным вращательным движением;

- применять вместо прямозубых шестерен косозубые и шевронные, а также повышать класс точности обра­ботки и уменьшать шероховатость поверхности шесте­рен; так, ликвидация погрешностей в зацеплении шесте­рен дает снижение шума па 5—10 дБ; замена прямозу­бых шестерен шевронными — 5 дБ;

- по возможности заменять зубчатые и цепные пере­дачи клиноременными и зубчато-ременными, например, зубчатую передачу на клиноременную, что снижает шум на 10—14 дБ;

- заменять, когда это возможно, подшипники качения на подшипники скольжения; это снижает шум на 10— 15 дБ;

- по возможности заменять металлические детали де­талями из пластмасс и других незвучных материалов либо перемежать соударяемые и трущиеся металличе­ские детали с деталями из незвучных материалов, на­пример, применять текстолитовые или капроновые шес­терни в паре со стальными; так, замена одной из сталь­ных шестерен (в паре) на капроновую снижает шум на 10—12 дБ;

- использовать пластмассы при изготовлении деталей корпусов, что дает хорошие результаты; например, за­мена стальных крышек редуктора пластмассовыми при­водит к снижению шума на 2—6 дБ на средних часто­тах и на 7—15 дБ на высоких, особенно неприятных для слухового восприятия;

- при выборе металла для изготовления деталей не­обходимо учитывать, что внутреннее трение в различных металлах неодинаково, а следовательно, различна звуч­ность; например, обычная углеродистая сталь, легиро­ванная сталь являются более звучными, чем чугун; большим трением обладают после закалки сплавы из марганца с 15—20% меди и магниевые сплавы; детали из них при ударах звучат глухо и ослаблено; хроми­рование стальных деталей, например турбинных лопа­ток, уменьшает их звучность; при увеличении темпера­туры металлов на 100—1500 С они становятся менее звучными;

- более широко применять принудительное смазывание трущихся поверхностей в сочленениях;

- применять балансировку вращающихся элементов машин;

- использовать прокладочные материалы и упругие вставки в соединениях, чтобы исключить или уменьшить передачи колебаний от одной детали или части агрегата к другой; так, при правке металлических листов нако­вальню нужно устанавливать на прокладку из демпфи­рующего материала.

Установка мягких прокладок в местах падения де­талей с конвейера или сбрасывания со станков, прокатных станов может существенно ослабить шум.

У прутковых автоматов и револьверных станков источником шума являются трубы, в которых вращается прутковый материал. Для снижения этого шума приме­няют различные конструкции малошумных труб; двухстенные трубы, между которыми проложена резина, трубы с наружной поверхностью, обернутой рези­ной, и т. и.

Для уменьшения шума, возникающего при работе галтовочных барабанов, дробилок, шаровых мельниц и других устройств, наружные стенки барабана облицо­вывают листовой резиной, асбестовым картоном или дру­гими подобными демпфирующими материалами; уста­навливают резиновые прокладки между корпусом и бронефутеровкой барабана и звукоизолирующие оболочки на расстоянии от корпуса барабана.

Аэродинамические шумы. Аэродинамические процес­сы играют большую роль в современной технике. Как правило, всякое течение газа или жидкости сопровож­дается шумом, поэтому с повышенным аэродинамиче­ским шумом приходится встречаться часто. Эти шумы являются главной составляющей шума вентиляторов, воздуходувов, компрессоров, газовых турбин, выпусков пара и воздуха в атмосферу, двигателей внутреннего сгорания и т. п.

Ко всем источникам аэродинамического шума отно­сятся: вихревые процессы в потоке рабочей среды; ко­лебания среды, вызываемые вращением лопастных ко­лес; пульсация давления рабочей среды; колебания сре­ды, вызываемые неоднородностью потока, поступающе­го на лопатки колес.

При движении тела в воздушной или газовой среде, при обдувании тела потоком среды вблизи поверхности тела периодически образуются вихри. Возникающие при срыве вихрей сжатия и разрежения сре­ды распространяются в виде звуковой волны. Такой звук называется вихревым.

Для уменьшения вихревого шума необходимо прежде всего уменьшить скорость обтекания и улучшить динамику тел.

Для машин с вращающимися рабочими колесами (вентиляторов, турбин) имеет место шум от неоднородного потока. В этом случае борьба с шумом ведется по пути улучшения аэродинамических характеристик машины.

Аэродинамический шум в источнике газотурбинной энергетической установки может быть снижен увеличением зазора между лопаточными венцами, подбором оптимального соотношения чисел направляющих и рабочих лопаток, улучшением аэродинамических характеристик проточной части компрессоров и турбин.

В большинстве случаев меры по ослаблению аэроди­намических шумов в источнике оказываются недоста­точными, поэтому дополнительное, а часто и основное снижение шума достигается путем звукоизоляции источ­ника и установки глушителей.

Гидродинамические шумы. Эти шумы возникают вследствие стационарных и нестационарных процессов в жидкостях (кавитации, турбулентности потока, гид­равлических ударов). В насосах источником шума яв­ляется кавитация жидкости, возникающая у поверхности лопастей при высоких окружных скоростях и недоста­точном давлении на всасывании.

Меры борьбы с кавитационным шумом - это улуч­шение гидродинамических характеристик насосов и вы­бор оптимальных режимов их работы. Для борьбы с шу­мом, возникающим при гидравлических ударах, необхо­димо правильно проектировать и эксплуатировать гид­росистемы, в частности, закрытие трубопроводов долж­но происходить постепенно, а не резко.

Электромагнитные шумы. Шумы электромагнитного происхождения возникают в электрических машинах и оборудовании. Причиной этих шумов является глав­ным образом взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве маг­нитных полей, а также пондеромоторные силы, вызы­ваемые взаимодействием магнитных полей, создаваемых токами. Снижение электромагнитного шума осущест­вляется путем конструктивных изменений в электриче­ских машинах, например, путем изготовления скошен­ных пазов якоря ротора. В трансформаторах необходи­мо применять более плотную прессовку пакетов, исполь­зовать демпфирующие материалы.

При работе электрических машин возникает также аэродинамический шум (в результате вращения ротора в газовой среде и движения воздушных потоков внутри машины) и механический шум, обусловленный вибраци­ей машины из-за неуравновешенности ротора, а также от подшипников и щеточного контакта. Хорошая притир­ка щеток может уменьшить шум на 8—10 дБ.

Лекция № 10.

Акустические колебания, шум

Вопросы борьбы с шумом в настоящее время имеют большое значение в различных областях экономики, в том числе в машиностроении, на транспорте, в энергетике.

Шум на производстве наносит большой ущерб, вредно действуя на организм человека и снижая производи­тельность труда. Утомление рабочих, операторов и служащих из-за сильного шума увеличивает число ошибок при работе, способствует возникновению травм. Нередко и в быту человек подвергается воздействию шума недопустимо высоких уровней. Поэтому борьба с шумом является важной задачей.

Часто возникает необходимость защиты не только от шума, но и от инфра- и ультразвука.

Физические характеристики шума

По физической сущностиупругие колебания, распространяющиеся волнообразно в воздухе, жидкой или твердой средах под воздействием какой-либо возмущающей силы, относят к акустическим колебаниям. Они могут быть как слышимыми, так и не слышимыми.

Акустические колебания с частотой от 16 до 20000 Гц называются звуковыми, с частотой менее 16 Гц – инфразвуком, с частотой более 20 кГц – ультразвуком.

Шумом является всякий нежелательный для человека звук.

Производственный шум как гигиенический фактор – совокупность звуков различной интенсивности и частоты, беспорядочно изменяющихся во времени и вызывающих у работающих неприятные субъективные ощущения.

Звуковые волны возникают при нарушении стационарного состояния среды вследствие воздействия на нее какой-либо возмущаю­щей силы. Частицы среды при этом начинают колебать­ся относительно положения равновесия, причем скорость таких колебаний значитель­но меньше скорости распространения волны (скорости звука с).

При нормальных атмосферных условиях (Т = 200С и нормальном атмосферном давлении) скорость звука с в воздухе равна 344 м/с.

Звуковое поле — это область пространства, в кото­рой распространяются звуковые волны. В каждой точке звукового поля давление и скорость движения частиц воздуха изменяются во времени. Разность между мгновенным значением полного давления и средним давле­нием, которое наблюдается в невозмущенной среде, называется звуковым давлением р. Единица измерения звукового давления – паскаль (Па).

При распространении звуковой волны происходит пе­ренос энергии. Средний поток энергии в какой-либо точ­ке среды в единицу времени, отнесенный к единице по­верхности, перпендикулярной к направлению распространения волны, называется интенсивностью звука в данной точке I(Вт/м2):

Величины звукового давления и интенсивности зву­ка, с которыми приходится иметь дело в практике борь­бы с шумом, могут меняться в широких пределах: по давлению до 108 раз, по интенсивности до 1016 раз. Естественно, что оперировать такими цифрами довольно неудобно. Наиболее же важно то обстоятельство, что ухо человека способно реагировать на относительное из­менение интенсивности, а не на абсолютное. Ощущения человека, возникающие при различного рода раздраже­ниях, в частности при шуме, пропорциональны логариф­му количества энергии раздражителя. Поэтому для характеристики акустического феномена принята специальная измерительная система интенсивности и энергии шума, учитывающая приближенную логарифмическую зависимость между раздражением и слуховым восприятием, а именно шкала логарифмических единиц как наиболее объективная и соответствующая физиологической сущности восприятия. По этой шкале каждая последующая ступень звуковой энергии больше предыдущей в 10 раз. Например, если интенсивность звука увеличивается в 10, 100, 1000 раз, то по логарифмической шкале увеличение происходит соответственно на 1, 2, 3, единицы. Логарифмическая единица, отражающая десятикратную степень увеличения интенсивности звука, называется белом ( Б).

Уровень интенсивности звука L1 (дБ) определяют по формуле:

L1 = 10 lg I / I0,

где I0 - интенсивность звука, соответствующая порогу слышимости,

(I0 = 10-12 Вт/м2) на частоте 1000 Гц.

Величина уровня звукового давления L (дБ):

L = 20 lg Р / Р0,

где Р – звуковое давление , Па;

Р0 - нулевое значение интенсивности звука, условно принятое равным

2×10-5 Па.

Таким образом, логарифмические единицы позволяют оценивать интенсивность звука не абсолютной величиной звукового давления, а ее уровнем, т.е. отношением фактически создаваемого давления к давлению, принятому за единицу сравнения. Такой единицей и принято считать минимальное давление, которое человек воспринимает как звук на частоте 1000 Гц, а именно 2×10-5 Па.

Весь диапазон энергии, воспринимаемой слухом как звук укладывается при таких условиях в 13 …14 Б. Для удобства пользуются не белом, а единицей в 10 раз меньшей – децибелом (дБ), который соответствует минимальному приросту силы звука, различаемому ухом.

Таким образом, бел и децибел – это условные единицы, которые показывают, насколько данная интенсивность звука в логарифмическом масштабе больше интенсивности звука, соответствующей порогу слышимости. Измеряемые таким образом величины называются уровнями интенсивности шума или уровнями звукового давления.

Интенсивность шума определяют в пределах октав. Октавы – диапазон частот, в котором верхние границы частоты вдвое больше нижней (например, 40 – 80, 80 – 160 Гц). Для обозначения октавы обычно берут не диапазон частот, а так называемые среднегеометрические частоты: например, для октавы 40 - 80 Гц – среднегеометрическая составляет 62,5 Гц, для октавы 80 – 160 – среднегеометрическая – 125 Гц.

По частотной характеристике различают шумы:

- низкочастотные – до 350 Гц;

- среднечастотные – 350 – 800 Гц;

- высокочастотные – выше 800 Гц.

В том случае, когда в расчетную точку попадает шум от нескольких источников, их интенсивности складываются:

I = I1 + I2 + ….. Iп

Искомый уровень звукового давления при одновременной работе этих источников получается путем деления левой и правой частей уравнения на IО и логарифмирования. После преобразования получаем:

L = 10 lg ( 10L1/ 10 + 10L2/ 10 + … +10Lп/ 10),

где L1 , L2 , Lп - уровни звукового давления, создаваемые каждым источником

Если имеется п одинаковых источников с уровнями звукового давления LI, то вычисления упрощаются:

L = LI +10 lg п

Например, два одинаковых станка совместно создадут уровень шума на 3 дБ больше, чем каждый из них.

Любую зависимость какой-либо величины (например, звукового давления) от времени можно представить в виде сумы конечного или бесконечного числа синусоидальных колебаний этой величины. Каждое такое колебание характеризуется своим среднеквадратичным значением физической величины и частотой, т.е. числом колебаний в секунду (Гц). Зависимость среднеквадратичных значений синусоидальных составляющих шума (или соответствующих им уровней в дБ) от частоты называется частотным спектром шума (или просто спектром).

Спектры получают, используя анализаторы шума – набор электрических фильтров, которые пропускают сигнал в определенной полосе частот полосе пропускания.

Шумы принято классифицировать (ГОСТ 12.1.003-83) по их спектральным и временным характеристикам.

По характеру спектра:

- широкополосные, с непрерывным спектром шириной более октавы (например, шум реактивного двигателя);

- тональные, в спектре которых имеются слышимые тона (шум дисковой пилы).

По временным характеристикам:

- постоянные, уровень звука которых за 8-ми часовой рабочий день изменяется не более, чем на 5 дБА;

- непостоянные, уровень звука которых за 8-ми часовой рабочий день изменяется более, чем на 5 дБА.

Непостоянные шумы в свою очередь, подразделяются на:

- колеблющиеся во времени, уровень звука которых изменяется во времени непрерывно;

- прерывистые, уровень звука которых ступенчато изменяется на 5 дБА и более, причем длительность интервалов, в течении которых уровень остается постоянным, составляет 1 с и более;

- импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с при этом уровни звука отличаются не менее, чем на 7 дБ.

Наши рекомендации