Назначение режущего инструмента
Зенкер - многолезвийный режущий инструмент для обработки цилиндрических и конических отверстий в деталях с целью увеличения их диаметра, повышения качества поверхности и точности.
Зенкерование как получистовая и, отчасти, чистовая операция механической обработки имеет следующие основные назначения:
Очистка и сглаживание поверхности отверстий: перед нарезанием резьбы или развёртыванием;
Калибрование отверстий: для болтов, шпилек и другого крепежа.
7.2 Технические требования, предъявляемые к режущему инструменту
Всякий режущий инструмент, должны обладать высокой твердостью, которая должна быть выше твердости обрабатываемых материалов. Вместе с тем, материал резца должен быть достаточно вязким, чтобы режущие кромки не выкрашивались под давлением стружки. Необходимо также, чтобы резцы имели высокую износоустойчивость.
В процессе резания возникает трение по передней и задней поверхностям инструмента. Стружка истирает переднюю, а деталь, точнее ее поверхность резания, заднюю поверхность инструмента. Это приводит к затуплению. Отсюда следует, что основным качеством режущих инструментов для их производительной работы должны быть твердость и износоустойчивость. Но этого еще недостаточно. Дело в том, что в процессе резания выделяется много теплоты. Часть ее поступает в инструмент и постепенно разогревает его режущие кромки и поверхности. Когда температура инструмента достигает определенного значения, он теряет свою первоначальную твердость и быстро выходит из строя. Зенкеры изготовляют преимущественно из быстрорежущих сталей или оснащёнными пластинами твёрдых сплавов. При зенкеровании широко применяются смазочно-охлаждающие вещества. Таким образом, третьим требованием, предъявляемым к материалам для режущих инструментов, является высокая теплостойкость, или температуроустойчивостъ. Чем выше теплостойкость резца, тем более высокими, при прочих равных условиях, могут быть режимы резания, тем выше производительность при резании.
ТВЕРДОСТЬ. Чтобы внедриться в поверхностные слои обрабатываемой заготовки, материал режущих лезвий рабочей части инструментов должен иметь высокую твердость.
Твердость инструментальных материалов может быть природная, т.е. свойственная этому материалу при его образовании, и может быть получена специальной обработкой. Так, инструментальные стали поставляются с металлургических заводов в отожженном состоянии, и в этом состоянии они легко поддаются обработке резанием. Механически обработанные инструменты подвергают термообработке, шлифованию и заточке. В результате термообработки существенно повышаются прочность и твердость инструментальных сталей. Твердость термообработанных инструментальных сталей измеряется по шкале Роквелла и выражается в условных единицах HRC. При твердости термообработанных инструментов, изготовленных из инструментальных сталей, в пределах HRC 63.64 достигаются наиболее устойчивая их работа и наименьшая изнашиваемость лезвий. При меньшей твердости возрастает изнашиваемость лезвий инструментов, а при большей твердости лезвия начинают выкрашиваться из-за чрезмерной хрупкости.
Твердые сплавы, минералокерамика и применяемые для изготовления режущих частей инструментов синтетические инструментальные материалы имеют высокую природную твердость, существенно превышающую твердость термообработанных инструментальных сталей.
Твердость минералокерамики и твердых сплавов измеряется по шкале Роквелла и находится в пределах HRA 87.93. Твердость синтетических инструментальных материалов настолько велика, что сопоставима с твердостью природного алмаза. Поэтому оценку твердости этих материалов производят по их микротвердости, которая находится в пределах 85.94 ГПа.
Конструкционные металлы, имеющие твердость HRC 30.35, удовлетворительно обрабатываются инструментами, выполненными из инструментальных сталей, термообработанных до HRC 63.64, т.е. при отношении твердостей, примерно равном двум. Конструкционные металлы, термообработанные до HRC 45.55, могут быть обработаны твердыми сплавами. Синтетические инструментальные материалы благодаря своей высокой твердости способны производить обработку закаленных сталей.
ПРОЧНОСТЬ. В процессе резания на рабочую часть инструментов действуют силы резания, достигающие значений более 10 кН. Под действием этих сил в материале рабочей части возникают большие напряжения. Чтобы эти напряжения не приводили к разрушениям рабочей части, инструментальные материалы должны быть достаточно прочными.
Из всех инструментальных материалов наилучшим сочетанием прочностных характеристик обладают инструментальные стали. Отношение между их пределами прочности на изгиб и растяжение равно 1,3.1,6, а отношение между пределами прочности на сжатие и растяжение - 1,6.2,0. Благодаря этому рабочая часть инструментов, выполненных из инструментальных сталей, успешно выдерживает сложный характер нагружения и может работать на сжатие, кручение, изгиб и растяжение.
Затем в порядке убывания прочностных характеристик следуют: твердые сплавы, минералокерамика, синтетические инструментальные материалы и алмазы. Все эти материалы достаточно хорошо выдерживают сжимающие напряжения. Однако их существенным недостатком является низкое значение прочности на изгиб (аи = 0,3.1,0 ГПа).
Предел же прочности на растяжение у этих материалов настолько мал, что вообще не позволяет производить обработку резанием при действии в них растягивающих напряжений. При использовании этой группы инструментальных материалов необходимо за счет соответствующей геометрии рабочей части добиваться, чтобы в процессе резания в них действовали только сжимающие напряжения.
ТЕМПЕРАТУРОСТОЙКОСТЬ. Интенсивное выделение теплоты в процессе резания металлов ведет к нагреву лезвий инструмента, причем наибольшая температура развивается на контактных поверхностях лезвий. После нагрева вплоть до этой температуры и охлаждения инструментальные материалы не изменяют своих свойств. При нагреве выше критической температуры в инструментальных материалах происходят структурные изменения и связанное с этим снижение твердости. Критическая температура называется температурой красностойкости. В основе термина "красностойкость" лежит физическое свойство металлов в нагретом до 600°С состоянии излучать темно-красный свет. По сути своей термин "красностойкость" означает температуростойкость инструментальных материалов. Различные инструментальные материалы имеют температуростойкость в широких пределах - от 220 до 1800°С. В порядке убывания температуростойкости инструментальные материалы располагаются в следующем порядке:
а) синтетические инструментальные материалы; б) минералокерамика;
в) твердые сплавы; г) инструментальные быстрорежущие стали;
д) инструментальные углеродистые стали.
ТЕПЛОПРОВОДНОСТЬ. Увеличение работоспособности режущего инструмента может быть достигнуто не только за счет повышения температуростойкости инструментального материала, но и благодаря улучшению условий отвода теплоты, выделяющейся в процессе резания на лезвии инструмента и вызывающей его нагрев до высоких температур. Чем большее количество теплоты отводится от лезвия в глубь массы инструмента, тем ниже температура на его контактных поверхностях. Присутствие в стали таких легирующих элементов, как вольфрам и ванадий, снижает теплопроводящие свойства инструментальных сталей, а легирование титаном, молибденом и кобальтом, наоборот, заметно повышает. Это же относится и к твердым сплавам, в состав которых входит карбид титана. Они более теплопроводны, чем твердые сплавы, содержащие только карбид вольфрама.
ИЗНОСОСТОЙКОСТЬ. Взаимодействие инструмента с обрабатываемым материалом протекает в условиях подвижного контакта. При этом оба тела, образующих трущуюся пару, взаимно изнашивают друг друга. Материал каждого из взаимодействующих тел обладает: рованные частицы инструментального материала.