Дополнительные требования по проектированию балок с гибкой стенкой
18.1*. Для разрезных балок с гибкой стенкой симметричного двутаврового сечения, несущих статическую нагрузку и изгибаемых в плоскости стенки, следует, как правило, применять стали с пределом текучести до 430 МПа (4400 кгс/см2).
18.2*. Прочность разрезных балок симметричного двутаврового сечения, несущих статическую нагрузку, изгибаемых в плоскости стенки, укрепленной только поперечными ребрами жесткости (рис. 22), с условной гибкостью стенки 6 £ £ 13 следует проверять по формуле
(M/Mu)4 + (Q/Qu)4 £ 1, (158)
где M и Q – значения момента и поперечной силы в рассматриваемом сечении балки;
Рис. 22. Схема балки с гибкой стенкой
Mu – предельное значение момента, вычисляемое по формуле
; (159)
Qu – предельное значение поперечной силы, вычисляемое по формуле
. (160)
В формулах (159) и (160) обозначено:
t и h – толщина и высота стенки;
Af – площадь сечения пояса балки;
tcr и m – критическое напряжение и отношение размеров отсека стенки, определяемые в соответствии с п. 7.4*;
b – коэффициент, вычисляемый по формулам
при a £ 0,03 b = 0,05 + 5a ³ 0,15; (161)
при 0,03 < a £ 0,1 b= 0,11 + 3a £ 0,40 (162)
Здесь
где Wmin – минимальный момент сопротивления таврового сечения, состоящего из сжатого пояса балки и примыкающего к нему участка стенки высотой (относительно собственной оси тавра, параллельной поясу балки);
a – шаг ребер жесткости.
18.3. Поперечные ребра жесткости, сечение которых следует принимать не менее указанных в п. 7.10, должны быть рассчитаны на устойчивость как стержни, сжатые силой N, определяемой по формуле
, (163)
где все обозначения следует принимать по п. 18.2*.
Значение N следует принимать не менее сосредоточенной нагрузки, расположенной над ребром.
Расчетную длину стержня следует принимать равной lef = h(1 – (1 –b), но не менее 0,7h.
Симметричное двустороннее ребро следует рассчитывать на центральное сжатие, одностороннее – на внецентренное сжатие с эксцентриситетом, равным расстоянию от оси стенки до центра тяжести расчетного сечения стержня.
В расчетное сечение стержня следует включать сечение ребра жесткости и полосы стенки шириной с каждой стороны ребра.
18.4. Участок стенки балки над опорой следует укреплять двусторонним опорным ребром жесткости и рассчитывать его согласно требованиям п. 7.12.
На расстоянии не менее ширины ребра и не более от опорного ребра следует устанавливать дополнительное двустороннее ребро жесткости размером согласно п. 18.3.
18.5. Устойчивость балок не следует проверять при выполнении требования п. 5.16*,а настоящих норм либо при расчетной длине (где bf – ширина сжатого пояса).
18.6. Отношение ширины свеса сжатого пояса к его толщине должно быть не более .
18.7*. Местное напряжение sloc в стенке балки, определяемое по формуле (31), должно быть не более 0,75Ry, при этом значении lef следует вычислять по формуле (146).
18.8*. При определении прогиба балок момент инерции поперечного сечения брутто балки следует уменьшать умножением на коэффициент a = 1,2 – 0,033 для балок с ребрами в пролете и на коэффициент a = 1,2 – 0,033 – h/l – для балок без ребер в пролете.
18.9*. В балках по п. 18.1* с условной гибкостью стенки 7 £ £ 10 при действии равномерно распределенной нагрузки или при числе сосредоточенных одинаковых нагрузок в пролете 5 и более, расположенных на равных расстояниях друг от друга и от опор, допускается не укреплять стенку в пролете поперечными ребрами по рис. 22, при этом нагрузка должна быть приложена симметрично относительно плоскости стенки.
Прочность таких балок следует проверять по формуле
(163,а)
где d – коэффициент, учитывающий влияние поперечной силы на несущую способность балки и определяемый по формуле d = 1 – 5,6Afh/(Awl).
При этом следует принимать tf ³ 0,3 t и 0,025 £ Afh/(Awl) £ 0,1.